2,265
Views
3
CrossRef citations to date
0
Altmetric
Public Health & Policy

Economic and cost-effectiveness aspects of vaccines in combating antibiotic resistance

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2215149 | Received 28 Dec 2022, Accepted 15 May 2023, Published online: 30 May 2023

References

  • World Health Organization. Antimicrobial resistance. Geneva, Switzerland: WHO; 2022 [accessed 2022 Dec 15]. https://www.who.int/health-topics/antimicrobial-resistance
  • World Health Organization. Antimicrobial resistance. Geneva, Switzerland: WHO; 2021 [accessed 2022 Dec 15]. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–5. doi:10.2147/IDR.S234610.
  • Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55. doi:10.1016/S0140-6736(21)02724-0.
  • Jansen KU, Anderson AS. The role of vaccines in fighting antimicrobial resistance (AMR). Hum Vaccines Immunother. 2018;14(9):2142–9. doi:10.1080/21645515.2018.1476814.
  • Atkins KE, Lafferty EI, Deeny SR, Davies NG, Robotham JV, Jit M. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance. Lancet Infect Dis. 2018;18(6):e204–13. doi:10.1016/S1473-3099(17)30478-4.
  • Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19(5):287–302. doi:10.1038/s41579-020-00506-3.
  • Buchy P, Ascioglu S, Buisson Y, Datta S, Nissen M, Tambyah PA, Vong S. Impact of vaccines on antimicrobial resistance. Int J Infect Dis. 2020;90:188–96. doi:10.1016/j.ijid.2019.10.005.
  • Klugman KP, Black S. Impact of existing vaccines in reducing antibiotic resistance: primary and secondary effects. Proc Natl Acad Sci USA. 2018;115(51):12896–901. doi:10.1073/pnas.1721095115.
  • Bloom DE, Black S, Salisbury D, Rappuoli R. Antimicrobial resistance and the role of vaccines. Proc Natl Acad Sci USA. 2018;115(51):12868–71. doi:10.1073/pnas.1717157115.
  • Sevilla JP, Bloom DE, Cadarette D, Jit M, Lipsitch M. Toward economic evaluation of the value of vaccines and other health technologies in addressing AMR. Proc Natl Acad Sci USA. 2018;115(51):12911–19. doi:10.1073/pnas.1717161115.
  • Standaert B, Rappuoli R. 2. How is the economic assessment of vaccines performed today? J Mark Access Health Policy. 2017;5(1):1335163. doi:10.1080/20016689.2017.1335163.
  • Annemans L, Beutels P, Bloom DE, De Backer W, Ethgen O, Luyten J, Van Wilder P, Willem L, Simoens S. Economic evaluation of vaccines: Belgian reflections on the need for a broader perspective. Value Health. 2021;24(1):105–11. doi:10.1016/j.jval.2020.09.005.
  • Bell E, Neri M, Steuten L. Towards a broader assessment of value in vaccines: the BRAVE way forward. Appl Health Econ Health Policy. 2022;20(1):105–17. doi:10.1007/s40258-021-00683-z.
  • Lu E, Chen HH, Zhao H, Ozawa S. Health and economic impact of the pneumococcal conjugate vaccine in hindering antimicrobial resistance in China. Proc Natl Acad Sci. 2021;118(13):e2004933118. doi:10.1073/pnas.2004933118.
  • Ozawa S, Chen HH, Rao GG, Eguale T, Stringer A. Value of pneumococcal vaccination in controlling the development of antimicrobial resistance (AMR): case study using DREAMR in Ethiopia. Vaccine. 2021;39(45):6700–11. doi:10.1016/j.vaccine.2021.04.024.
  • Ayieko P, Griffiths UK, Ndiritu M, Moisi J, Mugoya IK, Kamau T, English M, Scott JAG. Assessment of health benefits and cost-effectiveness of 10-valent and 13-valent pneumococcal conjugate vaccination in Kenyan children. PLos One. 2013;8(6):e67324. doi:10.1371/journal.pone.0067324.
  • Gomez JA, Tirado JC, Navarro Rojas AA, Castrejon Alba MM, Topachevskyi O. Cost-effectiveness and cost utility analysis of three pneumococcal conjugate vaccines in children of Peru. BMC Public Health. 2013;13(1):1025. doi:10.1186/1471-2458-13-1025.
  • Kieninger MP, Caballero EG, Sosa AA, Amarilla CT, Jáuregui B, Janusz CB, Clark AD, Castellanos RM. Cost-effectiveness analysis of pneumococcal conjugate vaccine introduction in Paraguay. Vaccine. 2015;33:A143–53. doi:10.1016/j.vaccine.2014.12.078.
  • Kim SY, Lee G, Goldie SJ. Economic evaluation of pneumococcal conjugate vaccination in the Gambia. BMC Infect Dis. 2010;10(1):260. doi:10.1186/1471-2334-10-260.
  • Komakhidze T, Hoestlandt C, Dolakidze T, Shakhnazarova M, Chlikadze R, Kopaleishvili N, Goginashvili K, Kherkheulidze M, Clark AD, Blau J. Cost-effectiveness of pneumococcal conjugate vaccination in Georgia. Vaccine. 2015;33:A219–26. doi:10.1016/j.vaccine.2014.12.070.
  • Kulpeng W, Leelahavarong P, Rattanavipapong W, Sornsrivichai V, Baggett HC, Meeyai A, Punpanich W, Teerawattananon Y. Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context? Vaccine. 2013;31(26):2839–47. doi:10.1016/j.vaccine.2013.03.047.
  • Mezones-Holguin E, Canelo-Aybar C, Clark AD, Janusz CB, Jaúregui B, Escobedo-Palza S, Hernandez AV, Vega-Porras D, González M, Fiestas F, et al. Cost-effectiveness analysis of 10- and 13-valent pneumococcal conjugate vaccines in Peru. Vaccine. 2015;33:A154–66. doi:10.1016/j.vaccine.2014.12.039.
  • Nakamura MM, Tasslimi A, Lieu TA, Levine O, Knoll MD, Russell LB, Sinha A. Cost effectiveness of child pneumococcal conjugate vaccination in middle-income countries. Int Health. 2011;3(4):270–81. doi:10.1016/j.inhe.2011.08.004.
  • Sibak M, Moussa I, El-Tantawy N, Badr S, Chaudhri I, Allam E, Baxter L, Abo Freikha S, Hoestlandt C, Lara C, et al. Cost-effectiveness analysis of the introduction of the pneumococcal conjugate vaccine (PCV-13) in the Egyptian national immunization program, 2013. Vaccine. 2015;33:A182–91. doi:10.1016/j.vaccine.2014.12.044.
  • Sundaram N, Chen C, Yoong J, Luvsan ME, Fox K, Sarankhuu A, La Vincente S, Jit M. Cost-effectiveness of 13-valent pneumococcal conjugate vaccination in Mongolia. Vaccine. 2017;35(7):1055–63. doi:10.1016/j.vaccine.2016.12.070.
  • Wang XJ, Saha A, Zhang XH. Cost-effectiveness analysis of a universal mass vaccination program with a PHiD-CV 2+1 schedule in Malaysia. Cost Eff Resour Alloc. 2017;15(1):17. doi:10.1186/s12962-017-0079-2.
  • Zhou H, He J, Wu B, Che D. Cost-effectiveness analysis of routine 13-valent pneumococcal conjugate vaccinations in Chinese infants. Hum Vaccines Immunother. 2018;14(6):1444–52. doi:10.1080/21645515.2018.1438794.
  • Hanage WP, Finkelstein JA, Huang SS, Pelton SI, Stevenson AE, Kleinman K, Hinrichsen VL, Fraser C. Evidence that pneumococcal serotype replacement in Massachusetts following conjugate vaccination is now complete. Epidemics. 2010;2(2):80–4. doi:10.1016/j.epidem.2010.03.005.
  • Løchen A, Croucher NJ, Anderson RM. Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci Rep. 2020;10(1):18977. doi:10.1038/s41598-020-75691-5.
  • Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet (London, England). 2011;378(9807):1962–73. doi:10.1016/S0140-6736(10)62225-8.
  • Kim SH, Chung DR, Song JH, Baek JY, Thamlikitkul V, Wang H, Carlos C, Ahmad N, Arushothy R, Tan SH, et al. Changes in serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from adult patients in Asia: emergence of drug-resistant non-vaccine serotypes. Vaccine. 2020;38(38):6065–73. doi:10.1016/j.vaccine.2019.09.065.
  • Obolski U, Lourenço J, Thompson C, Thompson R, Gori A, Gupta S. Vaccination can drive an increase in frequencies of antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae. Proc Natl Acad Sci USA. 2018;115(12):3102–7. doi:10.1073/pnas.1718712115.
  • Lo SW, Gladstone RA, van Tonder AJ, Lees JA, du Plessis M, Benisty R, Givon-Lavi N, Hawkins PA, Cornick JE, Kwambana-Adams B, et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect Dis. 2019;19(7):759–69. doi:10.1016/S1473-3099(19)30297-X.
  • Yahiaoui RY, Bootsma HJ, den Heijer CDJ, Pluister GN, John Paget W, Spreeuwenberg P, Trzcinski K, Stobberingh EE. Distribution of serotypes and patterns of antimicrobial resistance among commensal Streptococcus pneumoniae in nine European countries. BMC Infect Dis. 2018;18(1):440. doi:10.1186/s12879-018-3341-0.
  • Naylor NR, Atun R, Zhu N, Kulasabanathan K, Silva S, Chatterjee A, Knight GM, Robotham JV. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control. 2018;7(1):58. doi:10.1186/s13756-018-0336-y.
  • Shrestha P, Cooper BS, Coast J, Oppong R, Do Thi Thuy N, Phodha T, Celhay O, Guerin PJ, Wertheim H, Lubell Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob Resist Infect Control. 2018;7(1):98. doi:10.1186/s13756-018-0384-3.
  • Jit M, Ng DHL, Luangasanatip N, Sandmann F, Atkins KE, Robotham JV, Pouwels KB. Quantifying the economic cost of antibiotic resistance and the impact of related interventions: rapid methodological review, conceptual framework and recommendations for future studies. BMC Med. 2020;18(1):38. doi:10.1186/s12916-020-1507-2.
  • World Health Organization. Bacterial vaccines in clinical and preclinical development: an overview and analysis. Geneva, Switzerland: WHO; 2022 [accessed 2022 Dec 15]. https://www.who.int/publications/i/item/9789240052451
  • Kumar D, Chandra R, Mathur M, Samdariya S, Kapoor N. Vaccine hesitancy: understanding better to address better. Isr J Health Policy Res. 2016;5(1):2. doi:10.1186/s13584-016-0062-y.
  • World Health Organization. Global action plan on antimicrobial resistance. Geneva, Switzerland: WHO; 2015 [accessed 2022 Dec 15]. https://www.who.int/publications/i/item/9789241509763
  • Naylor NR, Zhu N, Hulscher M, Holmes A, Ahmad R, Robotham JV. Is antimicrobial stewardship cost-effective? A narrative review of the evidence. Clin Microbiol Infect. 2017;23(11):806–11. doi:10.1016/j.cmi.2017.06.011.
  • Stenberg K, Hanssen O, Edejer T-T, Bertram M, Brindley C, Meshreky A, Rosen JE, Stover J, Verboom P, Sanders R, et al. Financing transformative health systems towards achievement of the health sustainable development goals: a model for projected resource needs in 67 low-income and middle-income countries. Lancet Glob Health. 2017;5(9):e875–87. doi:10.1016/S2214-109X(17)30263-2.