867
Views
0
CrossRef citations to date
0
Altmetric
Novel Vaccines

Decoding trends in mRNA vaccine research: A comprehensive bibliometric study

, , , , , , & ORCID Icon show all
Article: 2355037 | Received 07 Feb 2024, Accepted 10 May 2024, Published online: 30 May 2024

References

  • Peck M, Gacic-Dobo M, Diallo MS, Nedelec Y, Sodha SS, Wallace AS. Global routine vaccination coverage. MMWR Morb Mortal Wkly Rep. 2018;68(42):937–18. doi:10.15585/mmwr.mm6842a1.
  • Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine technologies and platforms for infectious diseases: current progress, challenges, and opportunities. Vaccines. 2021;9(12):1490. doi:10.3390/vaccines9121490.
  • Xu S, Yang K, Li R, Zhang L. mRNA vaccine era–mechanisms, drug platform and clinical prospection. Int J Mol Sci. 2020;21(18):6582. doi:10.3390/ijms21186582.
  • Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, Gottardo R, Bica MA, Garofano A, Koch SD. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–20. doi:10.1016/S0140-6736(17)31665-3.
  • Granot-Matok Y, Ezra A, Ramishetti S, Sharma P, Naidu GS, Benhar I, Peer D. Lipid nanoparticles-loaded with toxin mRNA represents a new strategy for the treatment of solid tumors. THERANOSTICS. 2023;13(11):3497–508. doi:10.7150/thno.82228.
  • de Miguel AG, Gil-Prieto R. Vaccination strategies against SARS-CoV-2: General impact on the development of the pandemic. Revista Espanola De Quimioterapia. 2021;34(Suppl 1):60–2. doi:10.37201/req/s01.18.2021.
  • Guler AT, Waaijer CJ, Palmblad M. Scientific workflows for bibliometrics. Scientometrics. 2016;107(2):385–98. doi:10.1007/s11192-016-1885-6.
  • Radu AF, Bungau SG, Negru PA, Marcu MF, Andronie-Cioara FL. In-depth bibliometric analysis and current scientific mapping research in the context of rheumatoid arthritis pharmacotherapy. Biomed Pharmacother. 2022;154:113614. doi:10.1016/j.biopha.2022.113614.
  • Ma C, Su H, Li H. Global research trends on prostate diseases and erectile dysfunction: a bibliometric and visualized study. Front Oncol. 2020;10:627891. doi:10.3389/fonc.2020.627891.
  • Chen C, Hu Z, Liu S, Tseng H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12(5):593–608. doi:10.1517/14712598.2012.674507.
  • Zheng B, Kuang Y, Yuan D, Huang H, Liu S. The research landscape of immunology research in spinal cord injury from 2012 to 2022. Jor Spine. 2023;6(3):e1261. doi:10.1002/jsp2.1261.
  • Sun J, Zhao H, Fu L, Cui J, Yang Y. Global trends and research progress of photodynamic therapy in skin cancer: a bibliometric analysis and literature review. Clin Cosmet Investig Dermatol. 2023;16:479–98. doi:10.2147/CCID.S401206.
  • Shen Z, Wu H, Chen Z, Hu J, Pan J, Kong J. The global research of artificial intelligence on prostate cancer: a 22-year bibliometric analysis. Front Oncol. 2022;12:843735. doi:10.3389/fonc.2022.843735.
  • Goswami GG, Labib T. Modeling COVID-19 transmission dynamics: a bibliometric review. Int J Environl Res Public Health. 2022;19(21):14143. doi:10.3390/ijerph192114143.
  • Oh KE, Flaherty GT. Travel medicine research in the new millennium: A bibliometric analysis of articles published in travel medicine and infectious disease, 2003-2019. Travel Med Infect Dis. 2020;33:101549. doi:10.1016/j.tmaid.2019.101549.
  • Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017;11(4):959–75. doi:10.1016/j.joi.2017.08.007.
  • Chen C, Leydesdorff L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J Assoc Inf Sci Technol. 2014;65(2):334–51. doi:10.1002/asi.22968.
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C. et al. Safety and efficacy of the BNT162b2 mRNA covid-19vaccine. N Engl J Med. 2020;383(27):2603–15. doi:10.1056/NEJMoa2034577.
  • Freyn AW, Ramos da Silva J, Rosado VC, Bliss CM, Pine M, Mui BL, Tam YK, Madden TD, de Souza Ferreira LC, Weissman D. et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol Ther. 2020;28(7):1569–84. doi:10.1016/j.ymthe.2020.04.018.
  • Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson Ö, Thompson J. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against h10n8 and h7n9 influenza viruses. Mol Ther. 2017;25(6):1316–27. doi:10.1016/j.ymthe.2017.03.035.
  • Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, Wicke L, Perkovic M, Beissert T, Haas H. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower Doses. Mol Ther. 2018;26(2):446–55. doi:10.1016/j.ymthe.2017.11.017.
  • Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. NATURE. 2012;481(7379):81–U88. doi:10.1038/nature10660.
  • Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S. et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–31. doi:10.1021/acscentsci.0c00272.
  • Nane GF, Robinson-Garcia N, van Schalkwyk F, Torres-Salinas D. COVID-19 and the scientific publishing system: growth, open access and scientific fields. Scientometrics. 2023;128(1):345–62. doi:10.1007/s11192-022-04536-x.
  • Van Der Wende M. International academic mobility: Towards a concentration of the minds in europe. Eur Rev. 2015;23(S1):70–88. doi:10.1017/s1062798714000799.
  • Aygün I, Barciszewski J. The forerunners and successful partnerships behind the BioNTech mRNA vaccine. J Appl Genet. 2023;65(1):47–55. doi:10.1007/s13353-023-00793-5.
  • Lindsay KE, Bhosle SM, Zurla C, Beyersdorf J, Rogers KA, Vanover D, Xiao P, Araínga M, Shirreff LM, Pitard B. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat Biomed Eng. 2019;3(5):371–80. doi:10.1038/s41551-019-0378-3.
  • Selby LI, Cortez-Jugo CM, Such GK, Johnston APR. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology. 2017;9(5). doi:10.1002/wnan.1452.
  • Eygeris Y, Gupta M, Kim J, Sahay G. Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res. 2022;55(1):2–12. doi:10.1021/acs.accounts.1c00544.
  • Salleh MZ, Norazmi MN, Deris ZZ. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. PeerJ. 2022;10:e13083. doi:10.7717/peerj.13083.
  • Liang F, Lindgren G, Lin A, Thompson EA, Ols S, Röhss J, John S, Hassett K, Yuzhakov O, Bahl K. et al. Efficient Targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther. 2017;25(12):2635–47. doi:10.1016/j.ymthe.2017.08.006.
  • Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75. doi:10.1016/j.immuni.2005.06.008.
  • Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological Stability. Mol Ther. 2008;16(11):1833–40. doi:10.1038/mt.2008.200.
  • Zhang ZK, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K. et al. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded rNA. Immunity. 2016;45(4):737–48. doi:10.1016/j.immuni.2016.09.011.
  • Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, Miyake K, Shimizu T. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nature Structural & Molecular Biology. 2015;22(2):109–15. doi:10.1038/nsmb.2943.
  • Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38(17):5884–92. doi:10.1093/nar/gkq347.
  • Anderson BR, Muramatsu H, Jha BK, Silverman RH, Weissman D, Kariko K. Nucleoside modifications in RNA limit activation of 2-5-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011;39(21):9329–38. doi:10.1093/nar/gkr586.
  • Mu X, Greenwald E, Ahmad S, Hur S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 2018;46(10):5239–49. doi:10.1093/nar/gky177.
  • Pardi N, Muramatsu H, Weissman D, Kariko K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol. 2013;969:29–42. doi:10.1007/978-1-62703-260-5_2.
  • Henderson JM, Ujita A, Hill E, Yousif‐Rosales S, Smith C, Ko N, McReynolds T, Cabral CR, Escamilla‐Powers JR, Houston ME. et al. Cap 1 messenger RNA synthesis with Co-transcriptional CleanCap® Analog by in vitro transcription. Curr Protocol. 2021;1(2):e39. doi:10.1002/cpz1.39.
  • Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, Moody MA, Verkerke HP, Myles A, Willis E. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215(6):1571–88. doi:10.1084/jem.20171450.
  • Tam HH, Melo MB, Kang M, Pelet JM, Ruda VM, Foley MH, Hu JK, Kumari S, Crampton J, Baldeon AD. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci USA. 2016;113(43):6639–48. doi:10.1073/pnas.1606050113.
  • Li Y, Ma X, Yue Y, Zhang K, Cheng K, Feng Q, Ma N, Liang J, Zhang T, Zhang L. et al. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv Mater. 2022;34(20). doi:10.1002/adma.202109984.
  • Niazi SK. Making COVID-19 mRNA vaccines accessible: challenges resolved. Expert Rev Vaccines. 2022;21(9):1163–76. doi:10.1080/14760584.2022.2089121.
  • Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. doi:10.1016/j.addr.2022.114416.
  • Zhang J, Zhang Z, Wang L, Chen K, Wang Y. mRNA vaccine delivery carrier useful for preparing mRNA vaccine and medicine for preventing and/or treating tumors, viral pneumonia or related diseases, is prepared using polyethylene glycol-polyphosphate block copolymer and cationic lipid. CN116763933-A.
  • Xia X, Zhang H, Wu J, You X. mRNA vaccine delivery vector, is lipid polymer, obtained by reacting polyamidoamine dendrimer with 1,2-epoxydodecane. CN110448695-A; CN110448695-B.
  • Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles–From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. Acs Nano. 2021;15(11):16982–7015. doi:10.1021/acsnano.1c04996.
  • Ji AF, Xu M, Pan Y, Diao L, Ma L, Qian L, Cheng J, Liu M. Lipid microparticles show similar efficacy with lipid nanoparticles in delivering mRNA and preventing cancer. Pharm Res. 2023;40(1):265–79. doi:10.1007/s11095-022-03445-1.
  • Aldosari BN, Alfagih IM, Almurshedi AS. Lipid Nanoparticles as delivery systems for RNA-Based vaccines. Pharmaceutics. 2021;13(2):206. doi:10.3390/pharmaceutics13020206.
  • Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710–28. doi:10.1016/j.ymthe.2019.02.012.
  • Shobaki N, Sato Y, Harashima H. Mixing lipids to manipulate the ionization status of lipid nanoparticles for specific tissue targeting. Int J Nanomed. 2018;13:8395–410. doi:10.2147/IJN.S188016.
  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20. doi:10.1038/s41565-020-0669-6.
  • Guevara ML, Persano S, Persano F. Lipid-Based vectors for therapeutic mRNA-Based anti-cancer vaccines. Curr Pharm Des. 2019;25(13):1443–54. doi:10.2174/1381612825666190619150221.
  • Arangoa MA, Düzgünes N, de Ilarduya CT. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene Ther. 2003;10(1):5–14. doi:10.1038/sj.gt.3301840.
  • Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, Aroca Martinez GJ, Bonten M, Chandler R, Corral G, De Block EJL, Ecker L, Gabor JJ. et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2022;22(3):329–40. doi:10.1016/s1473-3099(21)00677.
  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64. doi:10.1038/mt.2010.85.
  • Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Controlled Release. 2021;338:537–47. doi:10.1016/j.jconrel.2021.08.061.
  • Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. NATURE. 2023;618(7963):144–50. doi:10.1038/s41586-023-06063-y.
  • Luo F, Zheng L, Hu Y, Liu S, Wang Y, Xiong Z, Hu X, Tan F. Induction of Protective Immunity against Toxoplasma gondii in Mice by Nucleoside Triphosphate Hydrolase-II (NTPase-II) self-amplifying RNA Vaccine Encapsulated in Lipid Nanoparticle (LNP). Front Microbiol. 2017;8:605. doi:10.3389/fmicb.2017.00605.
  • https://investors.modernatx.com/news, 2023).
  • He Q, Gao H, Tan D, Zhang H, Wang J. Z. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B. 2022;12(7):2969–89. doi:10.1016/j.apsb.2022.03.011.
  • Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, Huang L. Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast Cancer. Mol Ther. 2018;26(1):45–55. doi:10.1016/j.ymthe.2017.10.020.
  • Krishna S, Anderson KS. T-Cell epitope discovery for therapeutic cancer vaccines. Methods Mol Biol. 2016;1403:779–96. doi:10.1007/978-1-4939-3387-7_45.
  • Kreiter S, Diken M, Selmi A, Diekmann J, Attig S, Hüsemann Y, Koslowski M, Huber C, Türeci Ö, Sahin U. et al. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res. 2011;71(19):6132–42. doi:10.1158/0008-5472.CAN-11-0291.
  • Li JY, Wu Y, Xiang J, Wang H, Zhuang Q, Wei T, Cao Z, Gu Q, Liu Z, Peng R. et al. Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. Chem Eng J. 2023;456:456. doi:10.1016/j.cej.2022.140930.
  • Bafaloukos D, Gazouli I, Koutserimpas C, Samonis G. Evolution and progress of mRNA vaccines in the treatment of melanoma: Future prospects. Nato Adv Sci Inst Se. 2023;11(3):636. doi:10.3390/vaccines11030636.
  • Islam MA, Rice J, Reesor E, Zope H, Tao W, Lim M, Ding J, Chen Y, Aduluso D, Zetter BR. et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. BIOMATERIALS. 2021;266:120431. doi:10.1016/j.biomaterials.2020.120431.
  • Zhou W, Jiang L, Liao S, Wu F, Yang G, Hou L, Liu L, Pan X, Jia W, Zhang Y. et al. Vaccines’ new Era-RNA Vaccine. Viruses. 2023;15(8):1760. doi:10.3390/v15081760.
  • Chen P, Shi X, He W, Zhong G, Tang Y, Wang H, Zhang P. mRNA vaccine-a desirable therapeutic strategy for surmounting COVID-19 pandemic. Hum Vaccines Immunother. 2022;18(1):2040330. doi:10.1080/21645515.2022.2040330.
  • Rice SM, Ferree SD, Mesinkovska NA, Kourosh AS. The art of prevention: COVID-19 vaccine preparedness for the dermatologist. International Journal of Women’s Dermatology. 2021;7(2):209–12. doi:10.1016/j.ijwd.2021.01.007.
  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–16. doi:10.1056/NEJMoa2035389.
  • Shimabukuro T, Nair N. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine. JAMA. 2021;325(8):780–1. doi:10.1001/jama.2021.0600.
  • Huang L, Zhao T, Zhao W, Shao A, Zhao H, Ma W, Gong Y, Zeng X, Weng C, Bu L. et al. Herpes zoster mRNA vaccine induces superior vaccine immunity over licensed vaccine in mice and rhesus macaques. Emerging Microbes Infect. 2024;13:2309985. doi:10.1080/22221751.2024.2309985.
  • Kung F, Kaur S, Smith AA, Yang X, Wilder CN, Sharma K, Buyuktanir O, Pal U. A Borrelia burgdorferi surface-exposed transmembrane protein lacking detectable immune responses supports pathogen persistence and constitutes a vaccine target. J Infect Dis. 2016;213(11):1786–95. doi:10.1093/infdis/jiw013.
  • Duthie MS, Van Hoeven N, MacMillen Z, Picone A, Mohamath R, Erasmus J, Hsu F-C, Stinchcomb DT, Reed SG. Heterologous immunization with defined RNA and subunit vaccines enhances T cell responses that protect against leishmania donovani. Front Immunol. 2018;9:2420. doi:10.3389/fimmu.2018.02420.
  • Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA vaccine platform to combat parasitic infections. Vaccines. 2019;7(4):122. doi:10.3390/vaccines7040122.
  • Saunders KO, Pardi N, Parks R, Santra S, Mu Z, Sutherland L, Scearce R, Barr M, Eaton A, Hernandez G. et al. Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. NPJ Vaccines. 2021;6(1). doi:10.1038/s41541-021-00307-6.
  • Paloncyová M, Cechová P, Srejber M, Kührová P, Otyepka M. Role of ionizable lipids in SARS-CoV-2 vaccines as revealed by molecular dynamics simulations: from membrane structure to interaction with mRNA fragments. J Phys Chem Lett. 2021;12(45):11199–205. doi:10.1021/acs.jpclett.1c03109.
  • Chaudhary N, Weissman D, Whitehead K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–38. doi:10.1038/s41573-021-00283-5.
  • Kadali RAK, Janagama R, Peruru S, Malayala SV. Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. Int J Infect Dis. 2021;106:376–81. doi:10.1016/j.ijid.2021.04.047.
  • Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022;40(40):5798–805. doi:10.1016/j.vaccine.2022.08.036.
  • Ganesan S, Al Ketbi LMB, Al Kaabi N, Al Mansoori M, Al Maskari NN, Al Shamsi MS, Alderei AS, El Eissaee HN, Al Ketbi RM, Al Shamsi NS. et al. Vaccine side effects following COVID-19 vaccination among the residents of the UAE—An observational study. Front Public Health. 2022;10:876336. doi:10.3389/fpubh.2022.876336.
  • Ng SC, Peng Y, Zhang L, Mok CK, Zhao S, Li A, Ching JY, Liu Y, Yan S, Chan DLS. et al. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut. 2022;71(6):1106–16. doi:10.1136/gutjnl-2021-326563.
  • Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, Akilli-Öztürk Ö, Kranz LM, Berger H, Petschenka J. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021;371(6525):145–53. doi:10.1126/science.aay3638.
  • Furlan R. A Tolerizing mRNA Vaccine against Autoimmunity? Mol Ther. 2021;29(3):896–7. doi:10.1016/j.ymthe.2021.02.003.