Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 6, 2015 - Issue 4: Gene Editing for Crop Improvement
3,352
Views
34
CrossRef citations to date
0
Altmetric
Commentaries

CRISPRing into the woods

&
Pages 206-215 | Received 04 Aug 2015, Accepted 02 Sep 2015, Published online: 04 Nov 2015

REFERENCES

  • Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes Nicholas J, Voytas Daniel F, et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular Plant 2015; 8:1288-91; PMID:25749112; http://dx.doi.org/10.1016/j.molp.2015.02.011
  • Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. Plant Cell 2014; 26:151-63; PMID:24443519; http://dx.doi.org/10.1105/tpc.113.119792
  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol 2003; 54:519-46; PMID:14503002; http://dx.doi.org/10.1146/annurev.arplant.54.031902.134938
  • Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 2015; 33:41-52; PMID:25536441; http://dx.doi.org/10.1016/j.biotechadv.2014.12.006
  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 2014; 166:1292-7; PMID:25225186; http://dx.doi.org/10.1104/pp.114.247577
  • Busov VB, Brunner AM, Meilan R, Filichkin S, Ganio L, Gandhi S, Strauss SH. Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytologist 2005; 167:9-18; PMID:15948825; http://dx.doi.org/10.1111/j.1469-8137.2005.01412.x
  • Callahan A, Dardick C, Tosetti R, Lalli D, Scorza R. 21st Century Approach to Improving Burbank's ‘Stoneless’ Plum. HortScience 2015; 50:195-200
  • Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem 2014; 83:409-39; PMID:24606144; http://dx.doi.org/10.1146/annurev-biochem-060713-035418
  • Chen H-Y, Babst BA, Nyamdari B, Hu H, Sykes R, Davis MF, Harding SA, Tsai C-J. Ectopic expression of a loblolly pine Class II 4-coumarate:CoA ligase alters soluble phenylpropanoid metabolism but not lignin biosynthesis in Populus. Plane Cell Physiol 2014; 55:1669-78; http://dx.doi.org/10.1093/pcp/pcu098
  • Coleman HD, Park JY, Nair R, Chapple C, Mansfield SD. RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proc Natl Acad Sci 2008; 105:4501-6; http://dx.doi.org/10.1073/pnas.0706537105
  • Dmitriev DA, Rakitov RA. Decoding of superimposed traces produced by direct sequencing of heterozygous indels. PLoS Comput Biol 2008; 4:e1000113; PMID:18654614
  • Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen JG, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet 2014; 46:1089-96; PMID:25151358; http://dx.doi.org/10.1038/ng.3075
  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 2015; 5:12217; PMID:26193631; http://dx.doi.org/10.1038/srep12217
  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotech 2014; 32:279-84; http://dx.doi.org/10.1038/nbt.2808
  • Gamalei Y. Structure and function of leaf minor veins in trees and herbs. Trees 1989; 3:96-110; http://dx.doi.org/10.1007/BF01021073
  • Gill GP, Brown GR, Neale DB. A sequence mutation in the cinnamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotechnol J 2003; 1:253-8; PMID:17163902; http://dx.doi.org/10.1046/j.1467-7652.2003.00024.x
  • Harding SA, Leshkevich J, Chiang VL, Tsai CJ. Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme A ligases with spatially distinct metabolic roles in quaking aspen. Plant Physiol 2002; 128:428-38; PMID:11842147; http://dx.doi.org/10.1104/pp.010603
  • Hoenicka H, Lehnhardt D, Nilsson O, Hanelt D, Fladung M. Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring. Plant Biotechnol J 2014; 12:1066-74; PMID:24975279; http://dx.doi.org/10.1111/pbi.12213
  • Hu W-J, Kawaoka A, Tsai CJ, Lung J, Osakabe K, Ebinuma H, Chiang VL. Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides). Proc Natl Acad Sci USA 1998; 95:5407-12; PMID:9560289; http://dx.doi.org/10.1073/pnas.95.9.5407
  • Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 2005; 169:945-53; PMID:15489521; http://dx.doi.org/10.1534/genetics.104.034959
  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 2015; 15:16; PMID:25879861; http://dx.doi.org/10.1186/s12896-015-0131-2
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337:816-21; PMID:22745249; http://dx.doi.org/10.1126/science.1225829
  • Kanizay LB, Jacobs TB, Gillespie K, Newsome JA, Spaid BN, Parrott WA. HtStuf: High-throughput sequencing to locate unknown DNA junction fragments. Plant Genome 2015; 8(1); http://dx.doi.org/10.3835/plantgenome2014.10.0070
  • Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss SH. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol J 2015; PMID:26132805
  • Külheim C, Hui Yeoh S, Maintz J, Foley WJ, Moran GF. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics 2009; 10:452; PMID:19775472; http://dx.doi.org/10.1186/1471-2164-10-452
  • Kumar V, Jain M. The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Botany 2015; 66:47-57; PMID:25371501; http://dx.doi.org/10.1093/jxb/eru429
  • Lei Y, Lu L, Liu HY, Li S, Xing F, Chen L-L. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant 2014; 7:1494-6; PMID:24719468; http://dx.doi.org/10.1093/mp/ssu044
  • Li J, Brunner A, Shevchenko O, Meilan R, Ma C, Skinner J, Strauss S. Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Res 2008; 17:679-94; PMID:17929189; http://dx.doi.org/10.1007/s11248-007-9148-1
  • Litz R, Padilla G. Genetic transformation of fruit trees. In: Schnell RJ, Priyadarshan PM, eds., Genomics of Tree Crops. New York: Springer; 2012:117-53
  • Matzke AJM, Matzke MA. Position effects and epigenetic silencing of plant transgenes. Curr Opinion Plant Biol 1998; 1:142-8; PMID:10066569; http://dx.doi.org/10.1016/S1369-5266(98)80016-2
  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotech 2014; 32:347-55; http://dx.doi.org/10.1038/nbt.2842
  • Sattler SE, Funnell-Harris DL, Pedersen JF. Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 2010; 178:229-38; http://dx.doi.org/10.1016/j.plantsci.2010.01.001
  • Srinivasan C, Dardick C, Callahan A, Scorza R. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE 2012; 7:e40715; PMID:22859952; http://dx.doi.org/10.1371/journal.pone.0040715
  • Swamy PS, Hu H, Pattathil S, Maloney VJ, Xiao H, Xue LJX, Chung JD, Johnson VE, Zhu Y, Peter G, et al. Tubulin perturbation leads to unexpected cell wall modifications and affects leaf expansion and stomatal behavior in Populus. J Exp Botany 2015; http://dx.doi.org/10.1093/jxb/erv383
  • Van Acker R, Leplé JC, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MCE, et al. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci 2014; 111:845-50; http://dx.doi.org/10.1073/pnas.1321673111
  • Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, et al. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 2010; 154:874-86; PMID:20729393; http://dx.doi.org/10.1104/pp.110.159269
  • Voytas DF, Gao C. Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biol 2014; 12:e1001877; PMID:24915127; http://dx.doi.org/10.1371/journal.pbio.1001877
  • Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J. Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm Pinus radiata. Plant Physiol 2009; 149:370-83; PMID:18971431; http://dx.doi.org/10.1104/pp.108.125765
  • Wang MB, Helliwell CA, Wu LM, Waterhouse PM, Peacock WJ, Dennis ES. Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 2008; 14:903-13; PMID:18367720; http://dx.doi.org/10.1261/rna.760908
  • Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 2015; 112:3570-5; http://dx.doi.org/10.1073/pnas.1420294112
  • Xie K, Zhang J, Yang Y. Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Molecular Plant 2014; 7:923-6; PMID: 24482433; http://dx.doi.org/10.1093/mp/ssu009
  • Xue L-J, Alabady MS, Mohebbi M, Tsai CJ. Exploiting genome variation to improve next-generation sequencing data analysis and genome editing efficiency in Populus tremula x alba 717-1B4. Tree Genetics Genomics 2015; 11:82; http://dx.doi.org/10.1007/s11295-015-0907-5
  • Xue LJ, Tsai CJ. AGEseq: Analysis of genome editing by sequencing. Mol Plant 2015; 8:1428-1430; http://dx.doi.org/10.1016/j.molp.2015.06.001
  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology J 2014; 12:797-807; PMID:24854982; http://dx.doi.org/10.1111/pbi.12200
  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 2014; 42:10903-14; PMID:25200087; http://dx.doi.org/10.1093/nar/gku806
  • Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 2015; 208:298-301; http://dx.doi.org/10.1111/nph.13470