Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 14, 2023 - Issue 1
1,252
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Genetically modified soybean lines exhibit less transcriptomic variation compared to natural varieties

, , , , , , ORCID Icon, & show all
Pages 1-11 | Received 07 Apr 2021, Accepted 29 Jun 2023, Published online: 16 Jul 2023

References

  • Raman R. The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crops & Food. 2017;8(4):195–208. doi:10.1080/21645698.2017.1413522.
  • ISAA. Biotech crops continue to help meet the challenges of increased population and climate change. 2018.
  • Klumper W, Qaim M, Albertini E. A meta-analysis of the impacts of genetically modified crops. Plos One. 2014;9(11):e111629. doi:10.1371/journal.pone.0111629.
  • Kok EJ, Pedersen J, Onori R, Sowa S, Schauzu M, De Schrijver A, Teeri TH. Plants with stacked genetically modified events: to assess or not to assess?. Trends Biotechnol. 2014;32(2):70–73. doi:10.1016/j.tibtech.2013.12.001.
  • Kovalic D, Garnaat C, Guo L, Yan YP, Groat J, Silvanovich A, Ralston L, Huang MY, Tian Q, Christian A, et al. The Use of Next Generation Sequencing and Junction Sequence Analysis Bioinformatics to Achieve Molecular Characterization of Crops Improved Through Modern Biotechnology. Plant Genome-Us. 2012;5(3):149–63. doi:10.3835/plantgenome2012.10.0026.
  • Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, Zhang D. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep. 2013;3(1):2839. doi:10.1038/srep02839.
  • Chu Y, Corey DR. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic acid therapeutics. Nucleic Acid Ther. 2012;22(4):271–74. doi:10.1089/nat.2012.0367.
  • Balsamo GM, Valentim-Neto PA, Mello CS, Arisi AC. Comparative Proteomic Analysis of Two Varieties of Genetically Modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and Their Non-GM Counterparts. J Agric Food Chem. 2015;63(48):10569–77. doi:10.1021/acs.jafc.5b04659.
  • Oms-Oliu G, Odriozola-Serrano I, Martin-Belloso O. Metabolomics for assessing safety and quality of plant-derived food. Food Res Int. 2013;54(1):1172–83. doi:10.1016/j.foodres.2013.04.005.
  • Vilperte V, Agapito-Tenfen SZ, Wikmark OG, Nodari RO. Levels of DNA methylation and transcript accumulation in leaves of transgenic maize varieties. Environ Sci Eur. 2016;28(1):28. doi:10.1186/s12302-016-0097-2.
  • Haynes E, Jimenez E, Pardo MA, Helyar SJ. The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. Food Control. 2019;101:134–43. doi:10.1016/j.foodcont.2019.02.010.
  • Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, et al. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca(2+) signaling pathways in transgenic soybean. Plant J. 2019;100(2):384–98. doi:10.1111/tpj.14449.
  • Wang D, Liu YX, Yu Q, Zhao SP, Zhao JY, Ru JN, Cao XY, Fang ZW, Chen J, Zhou Y-B. Functional Analysis of the Soybean GmCDPK3 Gene Responding to Drought and Salt Stresses. Int J Mol Sci. 2019;20(23):5909. doi:10.3390/ijms20235909.
  • Cheng H, Jin HX, Gai JY, Yu DY. Transgenic technology and soybean quality improvement. Yi chuan = Hereditas. 2011;33(5):431–36. doi:10.3724/SP.J.1005.2011.00431.
  • Lin J, Mazarei M, Zhao N, Hatcher CN, Wuddineh WA, Rudis M, Tschaplinski TJ, Pantalone VR, Arelli PR, Hewezi T, et al. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. Plant Biotechnol J. 2016;14(11):2100–09. doi:10.1111/pbi.12566.
  • Yang X, Niu L, Zhang W, He H, Yang J, Xing G, Guo D, Zhao Q, Zhong X, Li H, et al. Increased multiple virus resistance in transgenic soybean overexpressing the double-strand RNA-specific ribonuclease gene PAC1. Transgenic Res. 2019;28(1):129–40. doi:10.1007/s11248-018-0108-8.
  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):12. doi:10.1186/1471-2105-12-323.
  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–15. doi:10.1038/nbt.1621.
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi:10.1186/gb-2010-11-10-r106.
  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–76. doi:10.1093/bioinformatics/bti610.
  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(Web Server issue):W293–W97. doi:10.1093/nar/gkl031.
  • Liu WX, Xu WT, Li L, Dong M, Wan YS, He XY, Huang KL, Jin WJ. iTRAQ-based quantitative tissue proteomic analysis of differentially expressed proteins (DEPs) in non-transgenic and transgenic soybean seeds. Sci Rep. 2018;8(1):8. doi:10.1038/s41598-018-35996-y.
  • Liu Q, Yang X, Tzin V, Peng Y, Romeis J, Li Y. Plant breeding involving genetic engineering does not result in unacceptable unintended effects in rice relative to conventional cross-breeding. Plant J. 2020;103(6):2236–49. doi:10.1111/tpj.14895.
  • Fu W, Wang C, Xu W, Zhu P, Lu Y, Wei S, Wu X, Wu Y, Zhao Y, Zhu S. Unintended effects of transgenic rice revealed by transcriptome and metabolism. GM Crops & Food. 2019;10(1):20–34. doi:10.1080/21645698.2019.1598215.
  • Ioset JR, Urbaniak B, Ndjoko-Ioset K, Wirth J, Martin F, Gruissem W, Hostettmann K, Sautter C. Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol Biol. 2007;65(5):645–54. doi:10.1007/s11103-007-9229-9.
  • Kogel KH, Voll LM, Schafer P, Jansen C, Wu YC, Langen G, Imani J, Hofmann J, Schmiedl A, Sonnewald S, et al. Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc Natl Acad Sci USA. 2010;107(14):6198–203. doi:10.1073/pnas.1001945107.
  • Valentim-Neto PA, Rossi GB, Anacleto KB, de Mello CS, Balsamo GM, Arisi ACM. Leaf proteome comparison of two GM common bean varieties and their non-GM counterparts by principal component analysis. J Sci Food Agr. 2016;96(3):927–32. doi:10.1002/jsfa.7166.