Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 15, 2024 - Issue 1
109
Views
0
CrossRef citations to date
0
Altmetric
Review

Regulatory framework for genetically modified organisms in the Kingdom of Eswatini

, , , , &
Pages 212-221 | Received 14 Nov 2023, Accepted 29 Jun 2024, Published online: 04 Jul 2024

References

  • Gbadegesi LA, Ayeni EA, Tettey CK, Uyanga VA, Aluko OO, Ahiakpa JK, Okoye CO, Mbadianya JI, Adekoya MA, Aminu RO, et al. LMOs in Africa: status, adoption, and public acceptance. Food Control. 2022;141(109193):109193. doi:10.1016/j.foodcont.2022.109193.
  • Muzhinji N, Ntuli V. Genetically modified organisms and food security in Southern Africa: conundrum and discourse. In: GM Crops and Food. Taylor and Francis Ltd; 2020. p. 25–35. doi:10.1080/21645698.2020.1794489.
  • Wang C, Huang C, Zhu P, Du Z, Wei S, Fu W. Applicability of a general analytical approach for detection of genetically modified organisms: collaborative trial. JAOAC Int. 2022;105(2):476–82. doi:10.1093/jaoacint/qsab154.
  • Labroo MR, Studer AJ, Rutkoski JE. Heterosis and hybrid crop breeding: a multidisciplinary review. Front Genet. 2021;12(643761). doi:10.3389/fgene.2021.643761.
  • Mwangangi IM, Muli JK, Neondo JO. Plant hybridization as an alternative technique in plant breeding improvement. Asian J Res In Crop Sci. 2019;4(1):1–11. doi:10.9734/ajrcs/2019/v4i130059.
  • Secretariat to the Convention on Biological Diversity. Cartagena protocol on biosafety to the convention on biological diversity: text and annexes. Secretariat to the Convention on Biological Diversity. 2000.
  • Kedisso EG, Maredia K, Guenthner J, Koch M. Commercialization of genetically modified crops in Africa: opportunities and challenges. Afr J Biotechnol. 2022;21(5):188–197. doi:10.5897/AJB2021.17434.
  • Silas DO, Meredia K, Kedisso EG, Guenthner J, Ouedraogo J. The value-chain of cotton industry in Kenya with focus on product stewardship for timely provision of certified quality hybrid bt cotton seeds to farmers. Afr J Biotechnol. 2022;21(8):361–79. doi:10.5897/AJB2022.17452.
  • ISAAA. Brief 54: global status of commercialized biotech/GM crops. Ithaca, NY: ISAAA; 2018.
  • Keiper F, Antanassova A. Regulation of synthetic biology: developments under the convention on biological diversity and its protocols. Front Bioeng Biotechnol. 2020;8(310). doi:10.3389/fbioe.2020.00310.
  • Secretariat to the Convention on Biological Diversity. Convention on biological diversity. Secretariat to the convention on biological diversity. 1992.
  • Turnbull C, Lillemo M, Hvoslef-Eide TAK. Global regulation of genetically modified crops amid the gene-edited crop boom – a review. In: Frontiers in Plant Science. Vol. 12. Frontiers Media S.A; 2021. doi:10.3389/fpls.2021.630396.
  • Biosafety Act. (testimony of Government of Eswatini). Mbabane, Eswatini: Government of Eswatini; 2012.
  • Slot MM, van de Wiel CCM, Kleter GA, Visser RGF, Kok EJ. The assessment of field trials in LMO research around the world and their possible integration in field trials for variety registration. Transgenic Res. 2018;27(4):321–29). Springer International Publishing. 10.1007/s11248-018-0076-z.
  • Akinbo O, Obukosia S, Ouedraogo J, Sinebo W, Savadogo M, Timpo S, Mbabazi R, Maredia K, Mikinde D, Ambali A. Commercial release of genetically modified crops in Africa: interface between biosafety regulatory systems and varietal release systems. Front Plant Sci. 2021;12. doi:10.3389/fpls.2021.605937.
  • Chable V, Louwaars N, Hubbard K, Baker B, Bocci RPB. Variety release and seed commercialisation: laws and policies applied to the organic sector. In: Lammerts van Bueren ET Myers JR. editors. Organic Crop Breeding. Chichester (UK): Wiley-Blackwell; 2012. p. 139–57.
  • Louwaars N, Burgaud F. Variety registration: the evolution of registration systems with a special emphasis on agrobiodiversity conservation. In: Halewood M. editor. Farmers’ crop varieties and Farmers’ Rights—Challenges in Taxonomy and Law. London (UK): Routledge; 2016, Chapter 6.
  • Louwaars N, De Jonge B. Regulating seeds—a challenging task. Agronomy. 2021;11(11):2324. doi:10.3390/agronomy11112324.
  • Bardocz S, Pusztai A. Biosafety first: chapter 32 post-commercialization testing and monitoring (or post-release monitoring) for the effects of transgenic plants. Tromso, Norway: Tapir Academic Publishers; 2007.
  • Singh M, Randhawa G. Transboundary movement of genetically modified organisms in India: current scenario and a decision support system. Food Control. 2016;68:20–24. doi:10.1016/j.foodcont.2016.03.032.
  • African Union Development Agency - NEPAD. Guidelines for institutional biosafety committees (IBCs) West Africa integrated vector management programme technical working group on biosafety. AUDA-NEPAD; 2022. www.nepad.org.
  • National Institute of Environmental Health Sciences. Institutional biosafety committee. Maryland, USA: National Institute of Environmental Health Sciences; 2022.
  • Koppisch A, Chair I, Jones S Institutional biosafety committees: policies and procedures Environmental Health and Safety. Arizona, USA: Northern Arizona University; 2022.
  • Secretariat of the Convention on Biological Diversity (SCBD). Annex GUIDANCE on RISK ASSESSMENT of LIVING MODIFIED ORGANISMS and MONITORING in the CONTEXT of RISK ASSESSMENT. 2016.
  • Waigmann E, Paoletti C, Davies H, Perry J, Kärenlampi S, Kuiper H. Risk Assessment of Genetically Modified Organisms (LMOs). EFSA J. 2012;10(10). doi:10.2903/j.efsa.2012.s1008.
  • Johnson KL, Raybould AL, Hudson MD, Poppy GM. How does scientific risk assessment of GM crops fit within the wider risk analysis? Trends In Plant Sci. 2007;12(1):1–5. doi:10.1016/j.tplants.2006.11.004.
  • Beumer K. How to include socio-economic considerations in decision-making on agricultural biotechnology? two models from Kenya and South Africa. Agric Human Values. 2019;36(4):669–84. doi:10.1007/s10460-019-09934-1.
  • Lemarié S, Marette S. The socio-economic factors affecting the emergence and impacts of new genomic techniques in agriculture: a scoping review. In: Trends in Food Science and Technology. Vol. 129. Elsevier Ltd; 2022. p. 38–48. doi:10.1016/j.tifs.2022.07.013.
  • Chan K. The registered charity appeals process: more reasons (and a few proposals) for reform. Can Tax J/Revue Fiscale Canadienne, Forthcoming. 2024; doi:10.2139/ssrn.4820249.
  • Zafar T, Rehman S, Ashraf S, Bibi A, Maqsood S, Maqsood M, Hayat T. Risks and risk assessment of gm crops with advanced modification technologies. Natl J Biol Sci. 2022;3(1):35–57. doi:10.37605/v3i1/4.
  • Fu W, Wang C, Zhu P, Xu W, Li X, Zhu S. A universal analytical approach for screening and monitoring of authorized and unauthorized LMOs. Food Sci Technol. 2020;125(109176):109176. doi:10.1016/j.lwt.2020.109176.
  • Wei W, Wang J-M, Mi X-C, Li Y-D, Zhu Y-M. Modeling gene flow from genetically modified plants. CABI Digit Lib. 2021;103–117. doi:10.1079/9781789247480.0007.
  • Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati KK, Sharma H, Kumar J. The rise of the crispr/cpf1 system for efficient genome editing in plants. In: Frontiers in Plant Science. Vol. 11. Frontiers Media S.A; 2020. doi:10.3389/fpls.2020.00264.
  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R. Genome editing in plants: exploration of technological advancements and challenges. Cells. 2019;8(11). MDPI. 1386. doi:10.3390/cells8111386.
  • Wei Z, Mishra R, Joshi RK, Zhao K. Targeted gene replacement in plants using crispr-cas technology. genome editing technologies for crop improvement. In: Zhao K, Mishra R Joshi RK. editors. Genome Editing Technologies for Crop Improvement. Springer. Singapore. 2022. doi:10.1007/978-981-19-0600-8_7.
  • Permyakova NV, Marenkova TV, Belavin PA, Zagorskaya AA, Sidorchuk YV, Deineko EV. CRISPR/Cas9-mediated Targeted DNA Integration: rearrangements at the junction of plant and plasmid DNA. Int J Mol Sci. 2022;23(15):8636. doi:10.3390/ijms23158636.
  • Callaway E. CRISPR plants now subject to tough gm laws in European Union. Nature. 2018;560(7716):16–17. doi:10.1038/d41586-018-05814-6.
  • Nguyen TH, Ben Taieb S, Moritaka M, Ran L, Fukuda S. Public acceptance of foods derived from genome editing technology: a review of the technical, social and regulatory aspects. J Int Food Agribus Mark. 2021;35(4):397–427. doi:10.1080/08974438.2021.2011526.
  • Entine J, Felipe MSS, Groenewald JH, Kershen DL, Lema M, McHughen A, Nepomuceno AL, Ohsawa R, Ordonio RL, Parrott WA, et al. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res. 2021;30(4):551–84. doi:10.1007/s11248-021-00257-8.
  • Kondo K, Taguchi C. Japanese regulatory framework and approach for genome-edited foods based on latest scientific findings. Food Saf. 2022;10(4):113–28. doi:10.14252/foodsafetyfscj.d-21-00016.
  • Marzec M, Hensel G. Prime editing: game changer for modifying plant genomes. Trends Plant Sci. 2020;25(8):722–24. doi:10.1016/j.tplants.2020.05.008.
  • Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture: trends and Challenges. Rome: FAO,UN; 2017.
  • ISAAA. Breaking barriers with breeding: a primer on new breeding innovations for food security. ISAAA Brief No. 56. Ithaca (NY): ISAAA; 2021.
  • Juma C, Serageldin I. ‘Freedom to innovate: biotechnology in Africa’s Development’, a report of the High-Level African Panel on Modern Biotechnology. African Union (AU) and New Partnership for Africa’s Development (NEPAD). 2007. Addis Ababa and Pretoria.
  • Bardocz S, Pusztai A. Chapter 32 Post-Commercialization Testing and Monitoring (or Post-Release Monitoring) for the Effects of Transgenic Plants. n.d.