589
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the relationship of transport network and land use patterns: an approach through weighted centrality assessment

&
Article: 2323946 | Received 20 Dec 2023, Accepted 23 Feb 2024, Published online: 05 Mar 2024

References

  • Alves, H., Brito, P., & Campos, P. (2022). Centrality measures in interval-weighted networks. Journal of Complex Networks, 10(4), 55–23. https://doi.org/10.1093/comnet/cnac031
  • Berry, B. J. L., & Kim, H. ‐. (1993). Challenges to the monocentric model. Geographical Analysis, 25(1), 1–4. https://doi.org/10.1111/j.1538-4632.1993.tb00275.x
  • Black, J., & Conroy, M. (1977). Accessibility measures and the social evaluation of urban structure. Environment and Planning A, 9(9), 1013–1031. https://doi.org/10.1068/a091013
  • Brandes, U. (2008). On variants of shortest-path betweenness centrality and their generic computation. Social Networks, 30(2), 136–145. https://doi.org/10.1016/j.socnet.2007.11.001
  • Breheny, M. J. (1978). The measurement of spatial opportunity in strategic planning. Regional Studies, 12(4), 463–479. https://doi.org/10.1080/09595237800185401
  • Burgess, E. W. (1925). The growth of the city: An Introduction to a research project. In R. E. Park, E. W. Burgess, & R. D. McKenzie (Eds.), The City (pp. 47–62). University of Chicago Press.
  • Census of India. (2011). Census Tables | Government of India. https://censusindia.gov.in/census.website/data/census-tables
  • Cheng, Y.-Y., Lee, R. K.-W., Lim, E.-P., & Zhu, F. (2015). Measuring centralities for transportation networks beyond structures. Applications of Social Media and Social Network Analysis, 23–39. https://doi.org/10.1007/978-3-319-19003-7_2
  • DDA. (2021). Master Plan for Delhi-2021. https://dda.gov.in/sites/default/files/inline-files/Master_Plan_for_Delhi_2021_text_report.pdf
  • Disney, A. (2020). Social network analysis: Understanding centrality measures. Cambridge Intelligence. https://cambridge-intelligence.com/keylines-faqs-social-network-analysis/
  • El-Geneidy, A. M., & Levinson, D. M. (2006). Access to destinations: development of accessibility measures. http://www.lrrb.org/PDF/200616.pdf
  • Erickson, R. A. (1986). Multinucleation in Metropolitan Economies. Annals of the Association of American Geographers, 76(3), 331–346. https://doi.org/10.1111/j.1467-8306.1986.tb00123.x
  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41. https://doi.org/10.2307/3033543
  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
  • Geurs, K. T., & van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography, 12(2), 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005
  • Giuliano, G., & Agarwal, A. (2017). Landuse impacts of transportation investment. In G. Giuliano & H. Susan (Eds.), The geography of urban transportation (4th ed., pp. 237–273). Guilford Press.
  • Handy, S. L., & Niemeier, D. A. (1997). Measuring accessibility: An exploration of issues and alternatives. Environment and Planning A, 29(7), 1175–1194. https://doi.org/10.1068/a291175
  • Hansen, W. G. (1959). How accessibility shapes land use. Journal of the American Planning Association, 25(2), 73–76. https://doi.org/10.1080/01944365908978307
  • Harris, C. D., & Ullman, E. L. (1945). The nature of cities. The Annals of the American Academy of Political and Social Science, 242(1), 7–17. https://doi.org/10.1177/000271624524200103
  • Heikkila, E., Gordon, P., Kim, J. I., Peiser, R. B., Richardson, H. W., & Dale-Johnson, D. (1989). What happened to the CBD-distance gradient?: Land values in a policentric city 1^. Environment and Planning A, 21(2), 221–232. https://doi.org/10.1068/a210221
  • Hewko, J., Smoyer-Tomic, K. E., & Hodgson, M. J. (2002). Measuring neighbourhood spatial accessibility to urban amenities: Does aggregation error matter? Environment and Planning A, 34(7), 1185–1206. https://doi.org/10.1068/a34171
  • Hoyt, H. (1939). The structure and growth of residential neighborhoods in American cities Washington. Federal Housing Administration.
  • Kasraian, D., Maat, K., Stead, D., & van Wee, B. (2016). Long-term impacts of transport infrastructure networks on land-use change: An international review of empirical studies. Transport Reviews, 36(6), 772–792. https://doi.org/10.1080/01441647.2016.1168887
  • Ladd, H., & Wheaton, W. (1991). Causes and consequences of the changing urban form. Regional Science and Urban Economics, 21(2), 157–162. https://doi.org/10.1016/0166-0462(91)90031-H
  • Liu, Y., Wei, X., Jiao, L., & Wang, H. (2016). Relationships between street centrality and land use intensity in Wuhan, China. Journal of Urban Planning and Development, 142(1). https://doi.org/10.1061/(asce)up.1943-5444.0000274
  • MOUD-Govt. of India. (2014). Plan formulation. In Urban and regional development plans formulation and implementation guidelines (Vol. 1, pp. 23–66). Government of India. Retrieved November, 2023, from https://mohua.gov.in/upload/uploadfiles/files/URDPFI%20Guidelines%20Vol%20I(2).pdf
  • NCRPB. (2021). Draft regional plan-2041 National Capital Region National Capital Region planning board.
  • Oberoi, K. S., Del Mondo, G., Dupuis, Y., & Vasseur, P. (2018). Towards a qualitative spatial model for road traffic in urban environment. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 1–6. https://doi.org/10.1109/ITSC.2017.8317644
  • Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251. https://doi.org/10.1016/j.socnet.2010.03.006
  • Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: A primal approach. Environment and Planning B: Planning and Design, 33(5), 705–725. https://doi.org/10.1068/b32045
  • Porta, S., Latora, V., Wang, F., Rueda, S., Strano, E., Scellato, S., Cardillo, A., Belli, E., Càrdenas, F., Cormenzana, B., & Latora, L. (2012). Street centrality and the location of economic activities in Barcelona. Urban Studies, 49(7), 1471–1488. https://doi.org/10.1177/0042098011422570
  • Rui, Y., & Ban, Y. (2014). Exploring the relationship between street centrality and land use in Stockholm. International Journal of Geographical Information Science, 28(7), 1425–1438. https://doi.org/10.1080/13658816.2014.893347
  • Siddiq, F., & Taylor, B. D. (2021). Tools of the trade?: Assessing the progress of accessibility measures for planning practice. Journal of the American Planning Association, 87(4), 497–511. https://doi.org/10.1080/01944363.2021.1899036
  • Singh, A., Singh, R. R., & Iyengar, S. R. S. (2020). Node-weighted centrality: A new way of centrality hybridization. Computational Social Networks, 7(1). https://doi.org/10.1186/s40649-020-00081-w
  • Song, C., Liu, Q., Song, J., Yang, D., Jiang, Z., Ma, W., Niu, F., & Song, J. (2023). The interactive relationship between street centrality and land use intensity—A case study of Jinan, China. International Journal of Environmental Research and Public Health, 20(6), 5127. https://doi.org/10.3390/ijerph20065127
  • Sosnowska, J., & Skibski, O. (2018). Path evaluation and centralities in weighted graphs - an axiomatic approach. In J. Lang (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, July 13–19, 2018 (pp. 3856–3862). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2018/536
  • Wang, F., Antipova, A., & Porta, S. (2011). Street centrality and land use intensity in Baton Rouge, Louisiana. Journal of Transport Geography, 19(2), 285–293. https://doi.org/10.1016/j.jtrangeo.2010.01.004
  • Yoon, J., Blumer, A., & Lee, K. (2006). An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics, 22(24), 3106–3108. https://doi.org/10.1093/BIOINFORMATICS/BTL533