183
Views
5
CrossRef citations to date
0
Altmetric
Orignal Articles

Generate and situated transformation as a paradigm for models of computational creativity

&
Pages 149-167 | Received 29 May 2015, Accepted 16 Jun 2016, Published online: 08 Jul 2016

References

  • American Heritage Dictionary of the English Language. (Eds.). (2000). American heritage dictionary of the English language (4th ed.). Boston, MA: Houghton Mifflin Company.
  • Ashby, W. R. (1960). Design for a brain (2nd ed.). New York: Wiley.10.1007/978-94-015-1320-3
  • Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22, 637–660.10.1017/S0140525X99532147
  • Barsalou, L. W. (2005). Abstraction as dynamic interpretation in perceptual symbol systems. In L. Gershkoff-Stowe & D. Rakison (Eds.), Building object categories (pp. 389–431). Carnegie Symposium Series. Majwah, NJ: Erlbaum.
  • Barsalou, L. W. (2007). Grounded cognition. Annual Review of Psychology, 59, 617–645. 10.1146/annurev.psych.59.103006.093639
  • Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1281–1289.10.1098/rstb.2008.0319
  • Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2, 716–724.10.1111/tops.2010.2.issue-4
  • Bentley, P., & Corne, D. (2002). Creative evolutionary systems. San Francisco, CA: Morgan Kaufmann.
  • Boden, M. A. (1991). The creative mind: Myths & mechanisms. London: Wiedenfeld and Nicholson.
  • Boden, M. A. (2009). Computer models of creativity. AI Magazine, 30, 23–34.
  • Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9, 322–328.10.1016/j.tics.2005.05.012
  • Clancey, W. J. (1997). Situated cognition: On human knowledge and computer representations. Cambridge, MA: Cambridge University Press.
  • Clancey, W. J. (1999). Conceptual coordination: How the mind orders experience in time. Mahwah, NJ: Lawrence Earlbaum Associates.
  • Cohen, P., & Feigenbaum, E. (1982). The handbook of artificial intelligence (Vol. III). Los Altos, CA: William Kauffman.
  • Colton, S. (2012). The painting fool: Stories from building an automated painter. In Computers and creativity (pp. 3–38). Berlin Heidelberg: Springer.
  • Cope, D. (2005). Computer models of musical creativity. Cambridge, MA: MIT Press.
  • Cross, N. (2004). Expertise in design: An overview. Design Studies, 25, 427–441.10.1016/j.destud.2004.06.002
  • Dorst, K. (2015). Frame innovation. Cambridge, MA: MIT Press.
  • Dorst, K., & Cross, N. (2001). Creativity in the design process: Co-evolution of problem–solution. Design Studies, 22, 425–437.10.1016/S0142-694X(01)00009-6
  • Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: The MIT Press.
  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.10.1207/s15516709cog0702_3
  • Gentner, D., & Forbus, K. D. (2011). Computational models of analogy. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 266–276.
  • Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. AI Magazine, 11, 26–36.10.1109/62.63160
  • Gero, J. S. (1994). Towards a model of exploration in computer-aided design. Paper presented at the Formal design methods for CAD, Amsterdam.
  • Gero, J. S. (1998). Conceptual designing as a sequence of situated acts. In I. Smith (Ed.), Artificial intelligence in structural engineering (pp. 165–177). Berlin: Springer.10.1007/BFb0030438
  • Gero, J. S., & Kazakov, V. A. (1998). Evolving design genes in space layout planning problems. Artificial Intelligence in Engineering, 12, 163–176.
  • Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure framework. Design Studies, 25, 373–391.10.1016/j.destud.2003.10.010
  • Goel, A. K. (1997). Design, analogy, and creativity. IEEE Expert, 12, 62–70.10.1109/64.590078
  • Grace, K., Maher, M., Fisher, D., & Brady, K. (in press). A data-intensive approach to predicting creative designs based on novelty, value, and surprise. International Journal of Design Creativity, and Innovation.
  • Hofstadter, D. R. (2008). Fluid concepts and creative analogies: Computer models of the fundamental mechanisms of thought. New York: Basic Books.
  • Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.
  • Holyoak, K. J. (1996). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press.
  • Itti, L., & Baldi, P. (2006). Bayesian surprise attracts human attention. Advances in Neural Information Processing Systems, 19, 547–554.
  • Kelly, N. (2011). Constructive interpretation in design thinking ( PhD). The University of Sydney, Sydney.
  • Kelly, N., & Gero, J. S. (2011). Constructive interpretation in design thinking. Paper presented at the Computation: The New Realm of Architectural Design – eCAADe 2011, Turkey.
  • Kelly, N., & Gero, J. S. (2014). Interpretation in design: Modelling how the situation changes during design activity. Research in Engineering Design, 25(2), 1–16. 10.1007/s00163-013-0168-y
  • Kelly, N., & Gero, J. S. (2015a). Creative systems that generate and explore. In A. Chakrabarti, T. Taura, & Y. Nagai (Eds.), DS79: Proceedings of the Third International Conference on Design Creativity (pp. 96–103). Bangalore: Design Society.
  • Kelly, N., & Gero, J. S. (2015b). Situated interpretation in computational creativity. Knowledge-Based Systems, 80, 48–57. 10.1016/j.knosys.2014.12.005
  • Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection (Vol. 1). Cambridge, MA: MIT Press.
  • Koza, J. R., Al-Sakran, S. H., & Jones, L. W. (2005). Automated re-invention of six patented optical lens systems using genetic programming. In H.-G. Beyer, U.-M. O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G. R. Raidl, T. Soule, A. Tyrrell, J.-P. Watson, & E. Zitzler (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference GECCO–2005 (pp. 1953–1960). New York, NY: ACM Press.
  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
  • Langley, P. (1987). Scientific discovery: Computational explorations of the creative processes. Cambridge, MA: MIT Press.
  • Leggatt, J. (2014, December 15). The cheesiest pizza in the world. The Guardian. Retrieved from http://www.theguardian.com/lifeandstyle/australia-food-blog/2014/dec/15/the-cheesiest-pizza-in-the-world-guardian-australia-reviews
  • Lindenmayer, A. (1968). Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. Journal of Theoretical Biology, 18, 280–299.10.1016/0022-5193(68)90079-9
  • Maher, M. L., Poon, J., & Boulanger, S. (1996). Formalising design exploration as co-evolution: A combined gene approach. In J. S. Gero & F. Sudweeks (Eds.), Advances in formal design methods for CAD (pp. 3–30). London: Chapman and Hall.
  • McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence (pp. 463–502). Edinburgh: Edinburgh University Press.
  • McCorduck, P. (1991). Aaron’s code: Meta-art, artificial intelligence, and the work of Harold Cohen. New York: WH Freeman & Co.
  • McCrae, R. R. (1987). Creativity, divergent thinking, and openness to experience. Journal of Personality and Social Psychology, 52, 1258–1265.10.1037/0022-3514.52.6.1258
  • Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving. Reading, MA: Addison-Wesley.
  • Pezzulo, G., Barsalou, L. W., Cangelosi, A., Fischer, M. H., McRae, K., & Spivey, M. J. (2013). Computational grounded cognition: A new alliance between grounded cognition and computational modeling. Frontiers in Psychology, 3, 1–11. Article 612.
  • Qian, L., & Gero, J. S. (1996). Function–behavior–structure paths and their role in analogy-based design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 10, 289–312.10.1017/S0890060400001633
  • Ritchie, G. (2012). A closer look at creativity as search. Paper presented at the International Conference on Computational Creativity, Dublin.
  • Runco, M. A. (1991). Divergent thinking. Norwood, NJ: Ablex Publishing.
  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 92–96.10.1080/10400419.2012.650092
  • Schacter, D. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 501–518.
  • Schon, D., & Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design Studies, 13, 135–156. 10.1016/0142-694X(92)90268-F
  • Schön, D. A. (1983). The reflective practitioner: How professionals think in action (Vol. 5126). New York, NY: Basic Books.
  • Schön, D. A. (1984). Problems, frames and perspectives on designing. Design Studies, 5, 132–136. 10.1016/0142-694X(84)90002-4
  • Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417–424.10.1017/S0140525X00005756
  • Seelig, T. L. (2012). inGenius: A crash course on creativity. London: Hay House.
  • Simon, H. A. (1969). The sciences of the artificial (Vol. 136). Cambridge, MA: MIT Press.
  • Stein, M. I. (1953). Creativity and culture. The Journal of Psychology, 36, 311–322.10.1080/00223980.1953.9712897
  • Stiny, G. (1980). Introduction to shape and shape grammars. Environment and Planning B, 7, 343–351.10.1068/b070343
  • Suwa, M., Gero, J., & Purcell, T. (2000). Unexpected discoveries and S-invention of design requirements: Important vehicles for a design process. Design Studies, 21, 539–567. 10.1016/s0142-694x(99)00034-4
  • Suwa, M., & Tversky, B. (1997). What do architects and students perceive in their design sketches? Design Studies, 18, 385–403.10.1016/S0142-694X(97)00008-2
  • Sygall, D. (2007). How Australia’s top scientist earned millions from Wi-Fi. The Sydney Morning Herald. Retrieved from http://www.smh.com.au/technology/sci-tech/how-australias-top-scientist-earned-millions-from-wifi-20091207-kep4.html
  • Tschacher, W., & Scheier, C. (1999). The perspective of situated and self-organizing cognition in cognitive psychology. In P. Van Loocke (Ed.), The nature of concepts: Evolution, structure and representation (pp. 68–90). Florence, KY: Routledge, Taylor & Francis.
  • Vattam, S., Helms, M. E., & Goel, A. K. (2010). A content account of creative analogies in biologically inspired design. AI EDAM, 24, 467–481.
  • Von Uexküll, J. (1957/1992). A stroll through the worlds of animals and men: A picture book of invisible worlds. Semiotica, 89, 319–391.
  • Wiggins, G. A. (2006a). A preliminary framework for description, analysis and comparison of creative systems. Knowledge-Based Systems, 19, 449–458.10.1016/j.knosys.2006.04.009
  • Wiggins, G. A. (2006b). Searching for computational creativity. New Generation Computing, 24, 209–222.10.1007/BF03037332
  • Yu, R., Gu, N., Ostwald, M., & Gero, J. S. (2015). Empirical support for problem–solution coevolution in a parametric design environment. AI EDAM, 29, 33–44. 10.1017/S0890060414000316
  • Ziemke, T., & Sharkey, N. E. (2001). A stroll through the worlds of robots and animals: Applying Jakob von Uexkull’s theory of meaning to adaptive robots and artificial life. Semiotica, 134, 701–746.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.