392
Views
15
CrossRef citations to date
0
Altmetric
Articles

Use of cellulose fibers from wheat straw for sustainable cement mortars

, , , , , , & show all
Pages 161-179 | Received 27 Mar 2018, Accepted 24 Sep 2018, Published online: 09 Dec 2018

References

  • Tampio E, Marttinen S, Rintala J. Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J Clean Prod. 2016;125:22–32.
  • Owamah HI, Dahunsi SO, Oranusi US, et al. Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Manag. 2014;34(4):747–752.
  • Kraiem N, Lajili M, Limousy L, et al. Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy 2016;107:409–418.
  • Gil LS, Maupoey PF. An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J Clean Prod. 2018;172:1224–1231.
  • Chintagunta AD, Ray S, Banerjee R. An integrated bioprocess for bioethanol and biomanure production from pineapple leaf waste. J Clean Prod. 2017;165:1508–1516.
  • Guo XM, Trably E, Latrille E, et al. Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydro Energy. 2010;35(19):10660–10673.
  • Pfaltzgraff LA, Cooper EC, Budarin V, et al. Food waste biomass: a resource for high-value chemicals. Green Chem. 2013;15(2):307–314.
  • Aldaya MM, Hoekstra AY. The water needed for Italians to eat pasta and pizza. Agric Syst 2010;103(6):351–360.
  • Schnitzer M, Monreal CM, Powell EE. Wheat straw biomass: a resource for high-value chemicals. J Environ Sci Health B. 2014;49(1):51–67.
  • Curreli N, Agelli M, Pisu B, et al. Complete and efficient enzymic hydrolysis of pretreated wheat straw. Process Biochem. 2002;37(9):937–941.
  • Shi T, Liu Y, Zhang L, et al. Burning in agricultural landscapes: an emerging natural and human issue in China. Landsc Ecol. 2014;29(10):1785–1798.
  • Mani S, Tabil LG, Sokhansanj S. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy. 2004;27(4):339–352.
  • Chandra R, Takeuchi H, Hasegawa T, et al. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy. 2012;43(1):273–282.
  • Ardanuy M, Claramunt J, Toledo Filho RD. Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr Build Mater. 2015;79:115–128.
  • Bederina M, Belhadj B, Ammari MS, et al. Improvement of the properties of a sand concrete containing barley straws - treatment of the barley straws. Constr Build Mater. 2016;115:464–477.
  • Belhadj B, Bederina M., Makhloufi Z, et al. Contribution to the development of a sand concrete lightened by the addition of barley straws. Constr Build Mater. 2016;113:513–522.
  • Bentchikou M, Guidoum A, Scrivener K, et al. Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Constr Build Mater. 2012;34:451–456.
  • Chabriac PA, Gourdon E, Gle P, et al. Agricultural by-products for building insulation: acoustical characterization and modeling to predict micro-structural parameter. Constr Build Mater. 2016;112:158–167.
  • Mustapha K, Annan E, Azeko ST, et al. Strength and fracture toughness of earth-based natural fiber-reinforced composites. J Compos Mater. 2016;50(9):1145–1160.
  • Neithalath N, Weiss J, Olek J. Acoustic performance and dumping behaviour of cellulose-cement composites. Cem Concr Compos. 2004;26:359–370.
  • Onuaguluchi O, Banthia N. Plant-based natural fibre reinforced cement composites: a review. Cem Concr Compos. 2016;68:96–108.
  • Roma LC Jr, Martello LS, Savastano H Jr. Evaluation of mechanical, physical and thermal performance of cement-based tiles reinforced with vegetable fibers. Constr Build Mater. 2008;22(4):668–674.
  • Toguyeni DYK, Coulibaly O, Ouedraogo A, et al. Study of the influence of roof insulation involving local materials on cooling loads of houses built of clay and straw. Energ Build. 2012;50:74–80.
  • Xie X, Zhou Z, Jiang M, et al. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos Part B-Eng. 2015;78:153–161.
  • Yan L, Kasal B, Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B-Eng. 2016;92:94–132.
  • Mo KH, Alengaram UJ, Jumaat MZ, et al. Green concrete partially comprised of farming waste residues: a review. J Clean Prod. 2016;117:122–138.
  • Evi AS. A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production-a review part II. J Clean Prod. 2017;142:4178–4194.
  • Paris JM, Roessler JG, Ferraro CC, et al. A review of waste products utilized as supplements to Portland cement in concrete. J Clean Prod. 2016;121:1–18.
  • Petrella A, Spasiano D, Acquafredda P, et al. Heavy metals retention (Pb (II), Cd (II), Ni (II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations. Process Saf Environ Prot. 2018;114:79–90.
  • Petrella A, Petruzzelli V, Basile T, et al. Recycled porous glass from municipal/industrial solid wastes sorting operations as a lead ion sorbent from wastewaters. React Funct Polym. 2010;70(4):203–209.
  • Petrella A, Petrella M, Boghetich G, et al. Heavy metals retention on recycled waste glass from solid wastes sorting operations: a comparative study among different metal species. Ind Eng Chem Res. 2011;51(1):119–125.
  • Petrella A, Petruzzelli V, Ranieri E, et al. Sorption of Pb (II), Cd (II), and Ni (II) from single-and multimetal solutions by recycled waste porous glass. Chem Eng Comm. 2016;203(7):940–947.
  • Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005;23(1):22–27.
  • Italian Organization for Standardization (UNI). Cement Composition, Specifications and Conformity Criteria for Common Cements. EN 197-1. Available online: http://store.uni.com/magento-1.4.0.1/index.php/en-197-1-2011.html (accessed on 2011 Sep 14).
  • Italian Organization for Standardization (UNI), Methods of Testing Cement-Part 1: Determination of Strength. EN 196-1. Available online: http://store.uni.com/magento-1.4.0.1/index.php/en-196-1-2016.html (accessed on 2016 Apr 27).
  • Tonoli GHD, Santos SF, Savastano H, et al. Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre. Cem Concr Compos. 2011;33:225–232.
  • Ardanuy M, Claramunt J, García-Hortal JA, et al. Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose. 2011;18:281–289.
  • Mohr BJ, Nanko H, Kurtis KE. Durability of kraft pulp fiber–cement composites to wet/dry cycling. Cem Concr Compos. 2005;27:435–448.
  • Toledo Filho RD, Scrivener K, England GL, et al. Durability of alkali sensitive sisal and coconut fibres in cement mortar composites. Cem Concr Compos. 2000;22:127–143.
  • Toledo Filho RD, England GL. Development of vegetable fibre–mortar composites of improved durability. Cem Concr Compos. 2003;25:185–196.
  • Mohr BJ, Biernacki JJ, Kurtis KE. Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites. Cem Concr Res. 2007;37:1531–1543.
  • Toledo Filho RD, Silva FDA, Fairbairn EMR, et al. Durability of compression molded sisal fiber reinforced mortar laminates. Constr Build Mater. 2009;23:2409–2420.
  • Melo Filho JDA, Silva FDA, Toledo Filho RD. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cem Concr Compos. 2013;40:30–39.
  • Tonoli GHD, Santos SF, Joaquim AP, et al. Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Constr Build Mater. 2010;24:193–201.
  • Soroushian P, Won JP, Hassan M. Durability characteristics of CO2-cured cellulose fiber reinforced cement composites. Constr Build Mater. 2012;34:44–53.
  • Arsène MA, Okwo A, Bilba K, et al. Chemically and thermally treated vegetable fibers for reinforcement of cement-based composites. Mater Manuf Process. 2007;22(2):214–227.
  • Claramunt J, Ardanuy M, García-Hortal JA, et al. The hornification of vegetable fibers to improve the durability of cement mortar composites. Cem Concr Compos. 2011;33:586–595.
  • Li Z, Wang L, Wang X. Flexural characteristics of coir fiber reinforced cementitious composites. Fibers Polym. 2006;7(3):286–294.
  • Sedan D, Pagnoux C, Smith A., et al. Mechanical properties of hemp fibre reinforced cement: influence of the fibre/matrix interaction. J Eur Ceram. 2008;28:183–192.
  • Arsène MA, Bilba K, Savastano Jr H, et al. Treatments of non-wood plant fibres used as reinforcement in composite materials. Mater Res. 2013;16(4):903–923.
  • Tonoli GHD, Belgacem MN, Siqueira G, et al. Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem Concr Compos. 2013;37(1):68–75.
  • Blankenhorn PR, Blankenhorn BD, Silsbee MR, et al. Effects of fiber surface treatments on mechanical properties of wood fiber-cement composites. Cem Concr Res. 2001;31:1049–1055.
  • Juarez C, Duran A, Valdez P, et al. Performance of ‘‘Agave lecheguilla’’ natural fiber in portland cement composites exposed to severe environment conditions. Build Environ. 2007;42:1151–1157.
  • Ferreira SR, Silva FA, Lima PRL, et al. Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems. Constr Build Mater. 2015;101:730–740.
  • Ledhem A, Dheilly RM, Benmalek ML, et al. Reuse of waste oils in the treatment of wood aggregates. Constr Build Mater. 2000;14:341–350.
  • Savastano H, Warden PG, Coutts RSP. Brazilian waste fibres as reinforcement for cement-based composites. Cem Concr Compos. 2000;22(5):379–384.
  • International Organization for Standardization (ISO). Cement, test methods, determination of strength. ISO 679. Available online: http://store.uni.com/magento-1.4.0.1/index.php/iso-679-2009.html (accessed on 2009 Apr 24).
  • Italian Organization for Standardization (UNI). Determination of consistency of cement mortars using a flow table. 7044. Available online: http://store.uni.com/magento-1.4.0.1/index.php/uni-7044-1972.html (accessed on 1972 Apr 20).
  • Italian Organization for Standardization (UNI). Acoustics – Determination of sound absorption coefficient and impedance in impedances tubes – Method using standing wave ratio. EN ISO 10534-1. Available online: http://store.uni.com/magento-1.4.0.1/index.php/en-iso-10534-1-2001.html (accessed on 2001 Jun 20).
  • Gustafsson SE. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum. 1991;62(3):797–804.
  • Tang X, Yan X. Acoustic energy absorption properties of fibrous materials: a review. Compos Part A. 2017;101:360–380.
  • Beranek LL. Acoustic measurements. New York (NY): Wiley; 1949.
  • Petrella A, Petrella M, Boghetich G, et al. Thermo-acoustic properties of cement-waste-glass mortars. Proc Inst Civ Eng Constr Mater. 2009;162(CM2):67–72.
  • Chen PH, Xu C, Chung DDL. Sound absorption enhancement using solid-solid interfaces in a nonporous cement-based structural material. Compos Part B-Eng. 2016;95:453–461.
  • Italian Organization for Standardization (UNI). Specification for Mortar for Masonry-Part 1: Rendering and Plastering Mortars. EN 998-1:2016. Available online: http://store.uni.com/magento-1.4.0.1/index.php/en-998-1-2016.html (accessed on 2016 Nov 09).
  • Italian Organization for Standardization (UNI). Specification for Mortar for Masonry. Masonry Mortars. EN 998-2:2016. Available online: http://store.uni.com/magento-1.4.0.1/index.php/en-998-2-2016.html (accessed on 2016 Nov 09).
  • Liuzzi S, Rubino C, Stefanizzi P, et al. Hygrothermal properties of clayey plasters with olive fibers. Constr Build Mater. 2018;158:24–32.
  • Di Mundo R, Petrella A, Notarnicola M. Surface and bulk hydrophobic cement composites by tyre rubber addition. Constr Build Mater. 2018;172:176–184.
  • Spasiano D, Luongo V, Petrella A, et al. Preliminary study on the adoption of dark fermentation as pretreatment for a sustainable hydrothermal denaturation of cement-asbestos composites. J Clean Prod. 2017;166:172–180.
  • Belhadj B, Bederina M, Montrelay N, et al. Effect of substitution of wood shavings by barley straws on the physico-mechanical properties of lightweight sand concrete. Const Build Mater. 2014;66:247–258.
  • Andiç-Çakir Ö, Sarikanat M, Tüfekçi HB, et al. Physical and mechanical properties of randomly oriented coir fiber–cementitious composites. Compos Part B-Eng. 2014;61:49–54.
  • Mohr BJ, Nanko H, Kurtis KE. Aligned kraft pulp fiber sheets for reinforcing mortar. Cem Concr Compos. 2006;28:161–172.
  • Soroushian P, Elzafraney M, Nossoni A, et al. Evaluation of normal-weight and light-weight fillers in extruded cellulose fiber cement products. Cem Concr Compos. 2006;28:69–76.
  • Savastano H, Warden PG, Coutts RSP. Microstructure and mechanical properties of waste fibre–cement composites. Cem Concr Compos. 2005;27(5):583–592.
  • Cardinale T, Arleo G, Bernardo F, et al. Investigations on thermal and mechanical properties of cement mortar with reed and straw fibers. Int J Heat Technol. 2017;35(1):S375–S382.
  • Miron IO, Manea DL, Cantor DM, et al. Organic thermal insulation based on wheat straw. Procedia Eng. 2017;181:674–681.
  • Belhadj B, Bederina M, Makhloufi Z, et al. Study of the thermal performances of an exterior wall of barley straw sand concrete in an arid environment. Energ Build. 2015;87:166–175.
  • Munshi S, Sharma RP. Experimental investigation on strength and water permeability of mortar incorporate with rice straw ash. Adv Mater Sci Eng. 2016;2016:1–7.
  • Merta I, Tschegg EK. Fracture energy of natural fibre reinforced concrete. Constr Build Mater. 2013;40:991–997.
  • Gourlay E, Glé P, Marceau S, et al. Effect of water content on the acoustical and thermal properties of hemp concretes. Constr Build Mater. 2017;139:513–523.
  • Aksoğan O, Binici H, Ortlek E. Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Constr Build Mater. 2016;106:253–263.
  • Cantor DM, Manea DL. Innovative building materials using agricultural waste. Procedia Technol. 2015;19:456–462.
  • Santosa SF, Schmidt R, Almeida AEFS, et al. Supercritical carbonation treatment on estrude fibre–cement reinforced with vegetable fibres. Cem Concr Compos. 2015;56:84–94.
  • John VM, Cincotto MA, Sjostrom C, et al. Durability of slag mortar reinforced with coconut fibre. Cem Concr Compos. 2005;27:565–574.
  • Coppola L, Bellezze T, Belli A, et al. Binders alternative to Portland cement and waste management for sustainable construction-part 1. J Appl Biomater Funct Mater. 2018;16(3):186–202.
  • Ranieri E, Fratino U, Petrella A, et al. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil. Environ Sci Pollut Res Int. 2016;23(16):15983–15989.
  • Ranieri E, Gorgoglione A, Petrella A, et al. Benzene removal in horizontal subsurface flow constructed wetlands treatment. Int J Appl Eng Res. 2015:10(6):14603–14614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.