363
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Luffa cylindrical fibre as a natural reinforcement for cement composites: A review

&

References

  • Akinyemi BA, Ojediran J, Olawale O, et al. Efficacy of expanded polystyrene as fine aggregate in cement mortars modified with latex paint as an alternative to polymer admixture. J Mech Behav Mater. 2020;29(1):163–168.
  • Akinyemi BA, Adesina A. Recent advancements in the use of biochar for cementitious applications: a review. J Build Eng. 2020;32:101705.
  • Ayobami AB. Performance of wood bottom ash in cement-based applications and comparison with other selected ashes: overview. Resour Conserv Recycl. 2021; 166:105351.
  • Adesina A. Performance of cementitious composites reinforced with chopped basalt fibres—an overview. Constr Build Mater. 2021;266:120970.
  • Jawaid MHPS, Khalil HA. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym. 2011;86(1):1–18.
  • Parida C, Dash SK, Chaterjee P. Mechanical properties of injection molded poly (lactic) Acid—Luffa fibre composites. SNL. 2015;05(04):65–72.
  • Akinyemi BA, Adesina A. Utilization of polymer chemical admixtures for surface treatment and modification of cellulose fibres in cement-based composites: a review. Cellulose. 28: 1241–1266.
  • Onuaguluchi O, Banthia N. Plant-based natural fibre reinforced cement composites: a review. Cem Concr Compos. 2016;68:96–108.
  • Kochova K, Gauvin F, Schollbach K, et al. Using alternative waste coir fibres as a reinforcement in cement-fibre composites. Constr Build Mater. 2020;231:117121.
  • Jo BW, Chakraborty S, Lee YS. Hydration study of the polymer modified jute fibre reinforced cement paste using analytical techniques. Constr Build Mater. 2015;101:166–173.
  • Guo A, Sun Z, Satyavolu J. Impact of modified kenaf fibres on shrinkage and cracking of cement pastes. Constr Build Mater. 2020;264:120230.
  • Akinyemi AB, Omoniyi ET, Onuzulike G. Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites. Constr Build Mater. 2020;245:118405.
  • Momoh EO, Osofero AI. Behaviour of oil palm broom fibres (OPBF) reinforced concrete. Constr Build Mater. 2019;221:745–761.
  • Frazão C, Barros J, Toledo Filho R, et al. Development of sandwich panels combining sisal fibre-cement composites and fibre-reinforced lightweight Concrete. Cem Concr Compos. 2018;86:206–223.
  • Shang X, Yang J, Song Q, et al. Efficacy of modified rice straw fibre on properties of cementitious composites. J Cleaner Prod. 2020;276:124184.
  • Merta I, Tschegg EK, Stanzl-Tschegg SE, et al. Fracture machanics of concrete reinforced with hemp, straw and elephant grass fibres. Constr Build Mater. 2011;40:991–997.
  • Querido VA, d’Almeida JRM, Silva FA. Development and analysis of sponge gourd (Luffa cylindrica L.) fibre-reinforced cement composites. BioRes. 2019;14(4):9981–9993.
  • Boynard CA, d'Almeida JRM. Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica)–polyester composite materials. Polym-Plast Technol Eng. 2000;39(3):489–499.
  • Mazali IO, Alves OL. Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica). An Acad Bras Cienc. 2005;77(1):25–31.
  • Oboh IO, Aluyor EO. Luffa cylindrica-an emerging cash crop. Afr J Agric Res. 2009;4(8):684–688.
  • Manikandaselvi S, Vadivel V, Brindha P. Review on Luffa acutangula L.: ethnobotany, phytochemistry, nutritional value and pharmacological properties. Int J Curr Pharm Rev Res. 2016;7(3):151–155.
  • Kalusuraman G, Kumaran ST, Siva I, et al. Cutting performance of luffa cylindrica fibre–reinforced composite by abrasive water jet. J Test Eval. 2018;48(5):3417–3428.
  • Adeyanju CA, Ogunniyi S, Ighalo JO, et al. A review on Luffa fibres and their polymer composites. J Mater Sci. 2020;4:1–17.
  • Rijswijk IV, Brouwer WD. 2002. Benefits of composites made of locally grown natural fibres. In: Mattoso LHC, Leão AL, Frollini E, editors. Proceedings of the Fourth International Symposium on Natural Polymers and Composites, Embrapa Agricultural Instrumentation, São Paulo University.
  • Mohanta N. 2016. Preparation and characterization of Luffa cylindrica fibre reinforced polymer composite [doctoral thesis]. National Institute of Technology Rourkela.
  • Chen Q, Shi Q, Gorb SN, et al. A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant. J Biomech. 2014;47(6):1332–1339.
  • Chen Y, Su N, Zhang K, et al. In-depth analysis of the structure and properties of two varieties of natural luffa sponge fibres. Materials. 2017;10(5):479.
  • Alhijazi M, Safaei B, Zeeshan Q, et al. Recent developments in Luffa natural fibre composites. Sustainability. 2020;12(18):7683.
  • Koruk H, Genc G. Acoustic and mechanical properties of Luffa fibre-reinforced biocomposites, Composites science and engineering. Cambridge, England: Woodhead Publishing; 2019. p. 325–341.
  • Koçak D, Mistik SI, Akalin M, et al. The use of Luffa cylindrica fibres as reinforcements in composites. In Biofibre reinforcements in composite materials. Cambridge, England: Woodhead Publishing; 2015. p. 689–699.
  • d'Almeida ALFS, Barreto DW, Calado V, et al. Effects of derivatization on sponge gourd (Luffa cylindrica) fibres. Polym Polym Compos. 2006;14(1):73–80.
  • Chen Y, Su N, Zhang K, et al. Effect of fibre surface treatment on structure, moisture absorption and mechanical properties of luffa sponge fibre bundles. Ind Crops Prod. 2018;123:341–352.
  • Tanobe VO, Sydenstricker TH, Munaro M, et al. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym Test. 2005;24(4):474–482.
  • Seki Y, Sever K, Erden S, et al. Characterization of Luffa cylindrica fibres and the effect of water aging on the mechanical properties of its composite with polyester. J Appl Polym Sci. 2012;123(4):2330–2337.
  • Tong Y, Zhao S, Ma J, et al. Improving cracking and drying shrinkage properties of cement mortar by adding chemically treated luffa fibres. Constr Build Mater. 2014;71:327–333.
  • Krishnudu DM, Sreeramulu D, Reddy PV. Synthesis and characterization of coir and luffa cylindrica filled with CaCo3 hybrid composites. IJIE. 2019;11(1):290–298.
  • Koruk H, Genç G. Acoustic and mechanical properties of luffa fibre-reinforced biocomposites. In Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Camridge, England: Woodhead Publishing; 2019. pp. 325–341.
  • Saw SK, Purwar R, Nandy S, et al. Fabrication, characterization, and evaluation of luffa cylindrica fibre reinforced epoxy composites. BioResources. 2013;8(4):4805–4826.
  • Siqueira G, Bras J, Dufresne A. Luffa cylindrica as a lignocellulosic source of fibre, microfibrillated cellulose and cellulose nanocrystals. BioResources. 2010;5(2):727–740.
  • Jino R, Pugazhenthi R, Ashok KG, et al. Enhancement of mechanical properties of Luffa fibre/epoxy composite using B4C. J Adv Microsc Res. 2017;12(2):89–91.
  • Melo BN, dos-Santos CG, Botaro VR, et al. Eco-composites of polyurethane and Luffa aegyptiaca modified by mercerisation and benzylation. Polym Polym Compos. 2008;16(4):249–256.
  • Jayamani E, Hamdan S, Rahman MR, et al. Processing and characterization of epoxy/luffa composites: investigation on chemical treatment of fibres on mechanical and acoustical properties. Bioresources. 2014;9(3):5542–5556.
  • Yusriah L, Sapuan SM, Zainudin ES, et al. Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Cleaner Prod. 2014;72:174–180.
  • Ridzuan MJM, Majid MA, Afendi M, et al. Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater Des. 2016;89:839–847.
  • Tang RC, Yang XH, Wang HJ, et al. Structure and thermal behavior of natural bamboo fibres for textile purposes. Chem Indus Forest Prod. 2004;1: 43–47.
  • Adeniyi AG, Onifade DV, Ighalo JO, et al. A review of coir fibre reinforced polymer composites. Compos B Eng. 2019;176:107305.
  • Botaro VR, Novack KM, Siqueira EJ. Dynamic mechanical behavior of vinylester matrix composites reinforced by Luffa cylindrica modified fibres. J Appl Polym Sci. 2012;124(3):1967–1975.
  • Behera A, Dehury J, Thaware MM. A comparative study on laminated and randomly oriented Luffa-Kevlar reinforced hybrid composites. J Nat Fibres. 2019;16(2):237–244.
  • Anbukarasi K, Kalaiselvam S. Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites. Mater Des. 2015;66:321–330.
  • Akinyemi B, Omoniyi T. Properties of latex polymer modified mortars reinforced with waste bamboo fibres from construction waste. Buildings. 2018;8(11):149.
  • Ghali LH, Aloui M, Zidi M, et al. Effect of chemical modification of luffa cylindrica fibres on the mechanical and hygrothermal behaviours of polyester/luffa composites. BioResources. 2011;6(4):3836–3849.
  • Martínez-Barrera G, Vigueras-Santiago E, Martínez-López M, et al. Luffa fibres and gamma radiation as improvement tools of polymer concrete. Constr Build Mater. 2013;47:86–91.
  • Dobo J. Some features of radiation processing in the plastics industry. Radiat Phys Chem. 1985;26(5):555–558.
  • Cruz-Zaragoza E, Martinez-Barrera G. Ionizing radiation effects on the matter and its applications in research and industry. In: Barrera-Díaz CE, Martínez-Barrera G, Editors. Gamma radiation effects on polymeric materials and its applications. India: Research Signpost; 2009. p. 1–14.
  • Kalusuraman G, Siva I, Munde Y, et al. Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite. Polym Test. 2020;87:106538.
  • Shen J, Xie YM, Huang X, et al. Behaviour of luffa sponge material under dynamic loading. Int J Impact Eng. 2013;57:17–26.
  • Jiang Z, Guo X, Li W, et al. Self-shrinkage behaviors of waste paper fibre reinforced cement paste considering its self-curing effect at early-ages. Int J Polym Sci. 2016;2016:1–12.
  • S. Sikander Ankit. An experimental study of concrete mix by adding natural fibre (zucchini fibre/luffa fibre). Int J Civil Eng Technol. 2018;9(7):724–732.
  • Quadri AI, Alabi O. Assessment of sponge gourd (Luffa aegyptical) fibre as a polymer reinforcement in concrete. J Civil Eng Mater Appl. 2020;4(2):125–132.
  • Alshaaer M, Mallouh SA, Al-Faiyz Y, et al. Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre-Reinforced geopolymer composite. Appl Clay Sci. 2017;143:125–133.
  • Uengtrakool D, Ruenwong K. The development of concrete masonry units by luffa cylindrica fibre. J Environ Des. 2019;6(1):1–16.
  • Shen JH, Xie M, Huang XD, et al. Luffa sponge as a sustainable engineering material. AMM. 2012;238:3–8.
  • Rokbi M, Osmani H, Imad A, et al. Effect of chemical treatment on flexure properties of natural fibre-reinforced polyester composite. Procedia Eng. 2011;10:2092–2097.
  • Coloradoa HA, Coloradoa SA, Buitrago-Sierrab R. Portland cement with luffa fibres. In Developments in strategic ceramic materials: a collection of papers presented at the 39th International Conference on Advanced Ceramics and Composites, January 25–30, 2015. Daytona Beach, FL:. John Wiley & Sons; 2015. Vol. 604, p. 103.
  • Tolêdo Filho RD, Scrivener K, England GL, et al. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem Concr Compos. 2000;22(2):127–143.
  • Merta I, Poletanovic B, Kopecsko K. Durability of natural fibres within cement-based materials-review. J. Hungarian Group Fib (Federation International de Beton). 2017;18:10–16.
  • Siqueira EJ, Botaro VR. Luffa cylindrica fibres/vinylester matrix composites: effects of 1, 2, 4, 5-benzenetetracarboxylic dianhydride surface modification of the fibres and aluminum hydroxide addition on the properties of the composites. Compos Sci Technol. 2013;82:76–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.