566
Views
1
CrossRef citations to date
0
Altmetric
Articles

High temperature resistant restoration mortar with fly ash and GGBFS

, &

References

  • Vieira CMF , MonteiroSN. Incorporation of solid wastes in red ceramics - An updated review. Rev Mater. 2009;14:881–905.
  • Corinaldesi V. Environmentally-friendly bedding mortars for repair of historical buildings. Constr Build Mater. 2012;35:778–784.
  • Torres I , MatiasG, FariaP. Natural hydraulic lime mortars - The effect of ceramic residues on physical and mechanical behaviour. J Build Eng. 2020;32:101747.
  • Pappu A , SaxenaM, AsolekarSR. Solid wastes generation in India and their recycling potential in building materials. Build Environ. 2007;42:2311–2320.
  • Matias G , FariaP, TorresI. Lime mortars with heat treated clays and ceramic waste: a review. Constr Build Mater. 2014;73:125–136.
  • Callebaut K , ElsenJ, Van BalenK, et al. Nineteenth century hydraulic restoration mortars in the Saint Michael’s Curch (Leuven, Belgium): natural hydraulic lime or cement? Cem Concr Res. 2001;31:397–403.
  • Grilo J , FariaP, VeigaR, et al. New natural hydraulic lime mortars - Physical and microstructural properties in different curing conditions. Constr Build Mater. 2014;54:378–384.
  • Zhang D , ZhaoJ, WangD, et al. Comparative study on the properties of three hydraulic lime mortar systems: Natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar. Constr Build Mater. 2018;186:42–52.
  • Li L , ZhaoL, LiZ. Study on the physical and mechanical properties of several lime materials in ancient chinese architecture. Wen wu bao hu yu kao gu ke xue = Sci Conserv Archaeol. 2014;26:74–84.
  • Maravelaki-Kalaitzaki P , BakolasA, KaratasiosI, et al. Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem Concr Res. 2005;35:1577–1586.
  • Arizzi A , VilesH, CultroneG. Experimental testing of the durability of lime-based mortars used for rendering historic buildings. Constr Build Mater. 2012;28:807–818.
  • El-Turki A , BallRJ, CarterMA, et al. Effect of dewatering on the strength of lime and cement mortars. J Am Ceram Soc. 2010;93:2074–2081.
  • Zeng Q , LiK, Fen-ChongT, et al. Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr Build Mater. 2012;27:560–569.
  • Ravi R , ThirumaliniS. Effect of natural polymers from cissus glauca roxb on the mechanical and durability properties of hydraulic lime mortar. Int J Archit Herit. 2019;13:229–243.
  • Bozkurt TS , DemirkaleSY. The experimental research of sound absorption in plasters produced with perlite aggregate and natural hydraulic lime binder. Acoust Aust. 2020;48:375–393.
  • TS EN 459-1. Building lime—part 1: definitions, specifications and conformity criteria. 2002.
  • Marini A , CominelliS, ZanottiC, et al. Improved natural hydraulic lime mortar slab for compatible retrofit of wooden floors in historical buildings. Constr Build Mater. 2018;158:801–813.
  • Vavričuk A , Bokan-BosiljkovV, KramarS. The influence of metakaolin on the properties of natural hydraulic lime-based grouts for historic masonry repair. Constr Build Mater. 2018;172:706–716.
  • Nežerka V , SlížkováZ, TesárekP, et al. Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust. Cem Concr Res. 2014;64:17–29.
  • BP Statistical Review of World Energy. Statistical Review of World Energy June 2018. BP Stat Rev World Energy; 2018.
  • Dindi A , QuangDV, VegaLF, et al. Applications of fly ash for CO2 capture, utilization, and storage. J CO2 Util. 2019;29:82–102.
  • IEA. Coal Information 2019. Int Energy Agency; 2019.
  • Elavarasan S , PriyaAK, KumarVK. Manufacturing fired clay brick using fly ash and M-sand. Mater Today Proc. 2020;37:872–876.
  • Carrajola R , HawreenA, Flores-ColenI, et al. Fresh properties of cement-based thermal renders with fly ash, air lime and lightweight aggregates. J Build Eng. 2020;34:101868.
  • Bras A , HenriquesFMA, CidadeMT. Effect of environmental temperature and fly ash addition in hydraulic lime grout behaviour. Constr Build Mater. 2010;24:1511–1517.
  • Wang S. Compressive strengths of mortar cubes from hydrated lime with cofired biomass fly ashes. Constr Build Mater. 2014;50:414–420.
  • Özbay E , ErdemirM, DurmuşHİ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties – a review. Constr Build Mater. 2016;105:423–434.
  • Gleisberg D. Mineral Commodity Summaries. Washington, DC: US Geological Survey. 2019;132-135.
  • Ehrenberg A , Romero SarcosN, HartD, et al. Influence of the thermal history of granulated blast furnace slags on their latent hydraulic reactivity in cementitious systems. J Sustain Metall. 2020;6:207–215.
  • Falchi L , MüllerU, FontanaP, et al. Influence and effectiveness of water-repellent admixtures on pozzolana-lime mortars for restoration application. Constr Build Mater. 2013;49:272–280.
  • Veiga MR , VelosaA, MagalhãesA. Experimental applications of mortars with pozzolanic additions: Characterization and performance evaluation. Constr Build Mater. 2009;23:318–327.
  • Zhang K , WangL, TieF, et al. A preliminary study on the characteristics of Lime-Based mortars with egg white addition. Int J Archit Herit. 2021..
  • Shaikh FUA , DobsonJ. Effect of fly ash on compressive strength and chloride binding of seawater-mixed mortars. J Sustain Cem Mater. 2019;8:275–289.
  • Wongsa A , WongkvanklomA, TanangteerapongD, et al. Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. J Sustain Cem Mater. 2020;9:307–321.
  • Sun Z , YoungC. Bleeding of SCC pastes with fly ash and GGBFS replacement. J Sustain Cem Mater. 2014;3:220–229.
  • Jihad Miah M , Kawsar AliM, Lo MonteF, et al. The effect of furnace steel slag powder on the performance of cementitious mortar at ambient temperature and after exposure to elevated temperatures. Structures. 2021;33:2811–2823.
  • Ezziane M , MolezL, JauberthieR, et al. Heat exposure tests on various types of fibre mortar. Eur J Environ Civ Eng. 2011;15:715–726.
  • Grzybowski M , ShahSP. Shrinkage cracking of fiber reinforced concrete. ACI Mater J. 1990;87:138–148.
  • Soroushian P , ElyamanyH, TliliA, et al. Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers. Cem Concr Compos. 1998;20:67–78.
  • Flores Medina N , BarluengaG, Hernández-OlivaresF. Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of polypropylene fibers. Compos Part B Eng. 2014;61:214–221.
  • Hasan A , MaroofN, IbrahimY. Effects of polypropylene fiber content on strength and workability properties of concrete. Polytech J. 2019;9:7–12.
  • Bayasi Z , DhaheriAM. Effect of exposure to elevated temperature on polypropylene fiber-reinforced concrete. ACI Mater J. 2002;99:22–26.
  • Gao D , YanD, LiX. Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures. Fire Saf J. 2012;54:67–73.
  • Tran NP , GunasekaraC, LawDW, et al. Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste. J Sustain Cem Mater. 2021..
  • Kazemi M , HajforoushM, TalebiPK, et al. In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test. J Sustain Cem Mater. 2020;9:289–306.
  • Irshidat MR , Al-NuaimiN, RabieM. Hybrid effect of carbon nanotubes and polypropylene microfibers on fire resistance, thermal characteristics and microstructure of cementitious composites. Constr Build Mater. 2021;266:121154.
  • Ingham JP. Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures. Mater Charact. 2009;60:700–709.
  • Pachta V , TriantafyllakiS, StefanidouM. Performance of lime-based mortars at elevated temperatures. Constr Build Mater. 2018;189:576–584.
  • Krzemień K , HagerI. Post-fire assessment of mechanical properties of concrete with the use of the impact-echo method. Constr Build Mater. 2015;96:155–163.
  • Saidi M , SafiB, BenmounahA, et al. Physico-mechanical properties and thermal behavior of firebrick-based mortars in superplasticizer presence. Constr Build Mater. 2016;104:311–321.
  • Georgali B , TsakiridisPE. Microstructure of fire-damaged concrete. A case study. Cem Concr Compos. 2005;27:255–259.
  • Nazel T. Fire impact on the mausoleum of Zein El-Deen Josef in Cairo. J Archit Conserv. 2016;22:126–148.
  • Ortiz P , AntunezV, MartínJM, et al. Approach to environmental risk analysis for the main monuments in a historical city. J Cult Herit. 2014;15:432–440.
  • Naziris IA , LagarosND, PapaioannouK. Optimized fire protection of cultural heritage structures based on the analytic hierarchy process. J Build Eng. 2016;8:292–304.
  • Rais MS , ShariqM, MasoodA, et al. An experimental and analytical investigation into age-dependent strength of fly ash mortar at elevated temperature. Constr Build Mater. 2019;222:300–311.
  • Nadeem A , MemonSA, LoTY. Mechanical performance, durability, qualitative and quantitative analysis of microstructure of fly ash and Metakaolin mortar at elevated temperatures. Constr Build Mater. 2013;38:338–347.
  • Zemri C , Bachir BouiadjraM. Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and slag cement (CEMIII) subjected to elevated temperature. Case Stud Constr Mater. 2020;12:e00339.
  • ASTM C618-17a . Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annu B ASTM Stand. 2017.
  • ASTM C 989. Standard specification for slag cement for use in concrete and mortars . Annu B ASTM Stand. 2018.
  • ASTM C33-16 . Standard specification for concrete aggregates. ASTM Int. 2016.
  • ASTM C1437 . Standard test method for flow of hydraulic cement mortar. ASTM Int. 2013.
  • ASTM C20-00. Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. Am Soc Test Mater. 2015
  • ASTM C348 . Standard test method for flexural strength of hydraulic-cement mortars. Annu B ASTM Stand. 1998.
  • ASTM C349 . Standard test method for compressive strength of hydraulic-cement mortars (Using portions of prisms broken in flexure). ASTM Int. 2002.
  • ASTM C 1585-04 . Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM Int. 2004.
  • Hanley R , PavíaS. A study of the workability of natural hydraulic lime mortars and its influence on strength. Mater Struct Constr. 2008;41:373–381.
  • Sébaïbi Y , DheillyRM, QuéneudecM. Study of the water-retention capacity of a lime-sand mortar: Influence of the physicochemical characteristics of the lime. Cem Concr Res. 2003;33:689–696.
  • Venkatarama Reddy BV , GuptaA. Influence of sand grading on the characteristics of mortars and soil-cement block masonry. Constr Build Mater. 2008;22:1614–1623.
  • Hendrickx R , RoelsS, Van BalenK. Measuring the water capacity and transfer properties of fresh mortar. Cem Concr Res. 2010;40:1650–1655.
  • Li G , WuX. Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars. Cem Concr Res. 2005;35:1128–1134.
  • Laskar AI , TalukdarS. Rheological behavior of high performance concrete with mineral admixtures and their blending. Constr Build Mater. 2008;22:2345–2354.
  • Xu S , WangJ, JiangQ, et al. Study of natural hydraulic lime-based mortars prepared with masonry waste powder as aggregate and diatomite/fly ash as mineral admixtures. J Clean Prod. 2016;119:118–127.
  • Zhang D , ZhaoJ, WangD, et al. Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars. Constr Build Mater. 2020;244:118360.
  • Gao X , YuQL, BrouwersHJH. Characterization of alkali activated slag-fly ash blends containing nano-silica. Constr Build Mater. 2015;98:397–406.
  • Lu L , HeY, HuS. Binding materials of dehydrated phases of waste hardened cement paste and pozzolanic admixture. J Wuhan Univ Technol Mater Sci Ed. 2009;24:140–144.
  • Sun W , YanH, ZhanB. Analysis of mechanism on water-reducing effect of fine ground slag, high-calcium fly ash, and low-calcium fly ash. Cem Concr Res. 2003;33:1119–1125.
  • Zhao BH , LiuYS, HeSH, et al. The effects of basalt fiber parameter on the fluidity of the cement mortar. Wuhan Ligong Daxue Xuebao/Journal Wuhan Univ Technol. 2009;31:5–8.
  • Xu Y , ChenH, WangP. Effect of polypropylene fiber on properties of alkali-activated slag mortar. Adv Civ Eng. 2020;2020:4752841.
  • Li LG , ChuSH, ZengKL, et al. Roles of water film thickness and fibre factor in workability of polypropylene fibre reinforced mortar. Cem Concr Compos. 2018;93:196–204.
  • Soualhi H , KadriEH, BouvetA, et al. New model to estimate plastic viscosity of eco-friendly and conventional concrete. Constr Build Mater. 2017;135:323–334.
  • Bentegri I , BoukendakdjiO, KadriEH, et al. Rheological and tribological behaviors of polypropylene fiber reinforced concrete. Constr Build Mater. 2020;261:119962.
  • Nawaz MA , AliB, QureshiLA, et al. Effect of sulfate activator on mechanical and durability properties of concrete incorporating low calcium fly ash. Case Stud Constr Mater. 2020;13:e00407.
  • Velandia DF , LynsdaleCJ, ProvisJL, et al. Effect of mix design inputs, curing and compressive strength on the durability of Na2SO4-activated high volume fly ash concretes. Cem Concr Compos. 2018;91:11–20.
  • Nawaz MA , QureshiLA, AliB, et al. Mechanical, durability and economic performance of concrete incorporating fly ash and recycled aggregates. SN Appl Sci. 2020;2:162.
  • Diederich P , MouretM, de RyckA, et al. The nature of limestone filler and self-consolidating feasibility-Relationships between physical, chemical and mineralogical properties of fillers and the flow at different states, from powder to cement-based suspension. Powder Technol. 2012;218:90–101.
  • Celik IB. The effects of particle size distribution and surface area upon cement strength development. Powder Technol. 2009;188:272–276.
  • Kürklü G. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos Part B Eng. 2016;92:9–18.
  • Chinchillas-Chinchillas MJ , Orozco-CarmonaVM, GaxiolaA, et al. Evaluation of the mechanical properties, durability and drying shrinkage of the mortar reinforced with polyacrylonitrile microfibers. Constr Build Mater. 2019;210:32–39.
  • Dantas SRA , SerafiniR, Romano Rc deO, et al. Influence of polypropylene microfibre (PPMF) dispersion procedure on fresh and hardened rendering mortar properties. Ambient Construído. 2020;20:7–23.
  • Cho JS , MoonKY, ChoiMK, et al. Performance improvement of local korean natural hydraulic lime-based mortar using inorganic by-products. Korean J Chem Eng. 2017;34:1385–1392.
  • Moon KY , ChoJS, ChoiMK, et al. Effect of blast furnace slag on the hydration properties in natural hydraulic lime. J Ceram Process Res. 2016;17:122–∼128.
  • Arizzi A , CultroneG. Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: a mineralogical, textural and physical-mechanical study. Constr Build Mater. 2012;31:135–143.
  • Vejmelková E , KeppertM, KeršnerZ, et al. Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime-metakaolin plasters for renovation of historical buildings. Constr Build Mater. 2012;31:22–28.
  • de Azeredo AFN , StrubleLJ, CarneiroAMP. Microstructural characteristics of lime-pozzolan pastes made from kaolin production wastes. Mater Struct Constr. 2015;48:2123–2132.
  • Iucolano F , LiguoriB, ColellaC. Fibre-reinforced lime-based mortars: a possible resource for ancient masonry restoration. Constr Build Mater. 2013;38:785–789.
  • Barbero-Barrera MM , Flores MedinaN. The effect of polypropylene fibers on graphite-natural hydraulic lime pastes. Constr Build Mater. 2018;184:591–601.
  • Izaguirre A , LanasJ, AlvarezJI. Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars. Constr Build Mater. 2011;25:992–1000.
  • Benchiheub D , AmouriC, HouariH, et al. Effect of natural pozzolana and polypropylene fibers on the performance of lime mortar for old buildings restoration. J Adhes Sci Technol. 2018;92:1324–1340.
  • Huang Z , PadmajaK, LiS, et al. Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures. Constr Build Mater. 2018;164:760–774.
  • McBride SP , ShuklaA, BoseA. Processing and characterization of a lightweight concrete using cenospheres. J Mater Sci. 2002;37:4217–4225.
  • Fenelonov VB , Mel’gunovMS, ParmonVN. The properties of cenospheres and the mechanism of their formation during high-temperature coal combustion at thermal power plans. KONA Powder Part J. 2010;28:189–208.
  • Haustein E , Kuryłowicz‐CudowskaA. The effect of fly ash microspheres on the pore structure of concrete. Minerals. 2020;10:58.
  • Kim HK , LeeHK. Effects of high volumes of fly ash, blast furnace slag, and bottom ash on flow characteristics, density, and compressive strength of high-strength mortar. J Mater Civ Eng. 2013;25:662–665.
  • Shaikh FUA , SupitSWM. Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr Build Mater. 2014;70:309–321.
  • Usman Rashid M. Experimental investigation on durability characteristics of steel and polypropylene fiber reinforced concrete exposed to natural weathering action. Constr Build Mater. 2020;250:118910.
  • Aydin S , BaradanB. Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars. Cem Concr Res. 2007;37:988–995.
  • Poon CS , AzharS, AnsonM, et al. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cem Concr Res. 2001;31:1291–1300.
  • Dias WPS , KhouryGA, SullivanPJE. Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F). ACI Mater J. 1990;87:160–166.
  • Karahan O. Transport properties of high volume fly ash or slag concrete exposed to high temperature. Constr Build Mater. 2017;152:898–906.
  • Xiao J , XieM, ZhangC. Residual compressive behaviour of pre-heated high-performance concrete with blast-furnace-slag. Fire Saf J. 2006;41:91–98.
  • Shariq M , PrasadJ, MasoodA. Effect of GGBFS on time dependent compressive strength of concrete. Constr Build Mater. 2010;24:1469–1478.
  • Wang HY. The effects of elevated temperature on cement paste containing GGBFS. Cem Concr Compos. 2008;30:992–999.
  • Liu X , YeG, De SchutterG, et al. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cem Concr Res. 2008;38:487–499.
  • Xiao J , FalknerH. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Saf J. 2006;41:115–121.
  • Tanyildizi H. Statistical analysis for mechanical properties of polypropylene fiber reinforced lightweight concrete containing silica fume exposed to high temperature. Mater Des. 2009;30:3252–3258.
  • Xu C , LiH, YangX. Effect and characterization of the nucleation C-S-H seed on the reactivity of granulated blast furnace slag powder. Constr Build Mater. 2020;238:117726.
  • Roszczynialski W. Determination of pozzolanic activity of materials by thermal analysis. J Therm Anal Calorim. 2002;70:387–392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.