275
Views
1
CrossRef citations to date
0
Altmetric
Articles

Sustainable repairing and improvement of concrete properties using artificial bacterial consortium

, ORCID Icon, ORCID Icon, , &

References

  • Vashisht R , AttriS, SharmaD, et al. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Microbiol Res. 2018;207:226–231.
  • Seifan M , EbrahiminezhadA, GhasemiY, et al. Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach. Bioprocess Biosyst Eng. 2019;42(1):37–46.
  • Ganesh AC , MuthukannanM, MalathyR, et al. An experimental study on effects of bacterial strain combination in fibre concrete and self-healing efficiency. KSCE J Civ Eng. 2019;23(10):4368–4377.
  • Seifan M , SamaniAK, BerenjianA. Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol. 2016;100(6):2591–2602.
  • Basha S , LingamguntaLK, KannaliJ, et al. Subsurface endospore-forming bacteria possess bio-sealant properties. Sci Rep. 2018;8(1):1–13.
  • Nain N , SurabhiR, YathishNV, et al. Enhancement in strength parameters of concrete by application of Bacillus bacteria. Constr Build Mater. 2019;202:904–908.
  • Pungrasmi W , IntarasoontronJ, JongvivatsakulP, et al. Evaluation of microencapsulation techniques for MICP bacterial spores applied in self-healing concrete. Sci Rep. 2019;9(1):1–10.
  • Van Mullem T , GruyaertE, CaspeeleR, et al. First large scale application with self-healing concrete in Belgium: analysis of the laboratory control tests. Materials. 2020;13(4):997.
  • Al-Tabbaa A , LarkB, PaineK, et al. Biomimetic cementitious construction materials for next-generation infrastructure. Proc Inst Civil Eng-Smart Infrastruct Construct. 2018;171(2):67–76.
  • De Belie N , GruyaertE, Al‐TabbaaA, et al. A review of self‐healing concrete for damage management of structures. Adv Mater Interfaces. 2018;5(17):1800074.
  • Tan L , ReekstingB, Ferrandiz-MasV, et al. Effect of carbonation on bacteria-based self-healing of cementitious composites. Constr Build Mater. 2020;257:119501.
  • Silvab YB , SarubbobLA, BenachouraM. Biomineralization of calcium carbonate by Bacillus cereus for self-healing biocement. Chem Eng Transact. 2020;79:97–102.
  • Che S , MenY. Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol. 2019;46(9–10):1343–1358.
  • Sarkar M , AdakD, TamangA, et al. Genetically-enriched microbe-facilitated self-healing concrete—a sustainable material for a new generation of construction technology. RSC Adv. 2015;5(127):105363–105371.
  • Chahal N , RajorA, SiddiqueR. Calcium carbonate precipitation by different bacterial strains. Afr J Biotechnol. 2011;10(42):8359–8372.
  • Kim HJ , EomHJ, ParkC, et al. Calcium carbonate precipitation by Bacillus and Sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. J Microbiol Biotechnol. 2016;26(3):540–548.
  • Moghannem SA , RefaatBM, El-SherbinyGM, et al. Characterization of heavy metal and antibiotic-resistant bacteria isolated from polluted localities in Egypt. Egypt Pharmaceut J. 2015;14(3):158.
  • Vashisht R , ShuklaA. Potential application of bacteria to improve the self-healing and strength of concrete. J Build Rehabil. 2020;5(1):10.
  • Messaoudi O , BendahouM, BenamarI, et al. Identification and preliminary characterization of non-polyene antibiotics secreted by new strain of actinomycete isolated from sebkha of Kenadsa, Algeria. Asian Pacific J Trop Biomed. 2015;5(6):438–445.
  • Dhami NK , MukherjeeA, ReddyMS. Micrographical, mineralogical, and nanomechanical characterization of microbial carbonates from urease and carbonic anhydrase-producing bacteria. Ecol Eng. 2016;94:443–454.
  • Altschul SF , GishW, MillerW, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410.
  • Xu H , LianJ, GaoM, et al. Self-healing concrete using rubber particles to immobilize bacterial spores. Materials. 2019;12(14):2313.
  • Code E. Egyptian Code of Practice for Concrete Structures, HBRC. Arabic, Cairo, Egypt, 2007.
  • ASTM C39/C39M-17a . Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, 2017. www.astm.org.
  • ASTM C496/C496M-17 . Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA, 2017. www.astm.org.
  • ASTM C597-16 . Standard Test Method for Pulse Velocity through Concrete. ASTM International, West Conshohocken, PA, 2016. www.astm.org.
  • Andrzej M , MartaM. GWT—new testing system for “in-situ” measurements of concrete water permeability. Procedia Eng. 2016;153:483–489.
  • Sagripanti JL , BonifacinoA. Comparative sporicidal effects of liquid chemical agents. Appl Environ Microbiol. 1996;62(2):545–551.
  • Jonkers HM , SchlangenE. 2007. Crack repair by concrete-immobilized bacteria. In Proceedings of the first international conference on self-healing materials 18, 20.
  • Krishnapriya S , Venkatesh BabuDL, GPA. Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res. 2015;174:48–55.
  • Mutitu KD , MunyaoMO, WachiraMJ, et al. Effects of biocementation on some properties of cement-based materials incorporating Bacillus species bacteria—a review. J Sustain Cement-Based Mater. 2019;8(5):309–325.
  • Preiss L , HicksDB, SuzukiS, et al. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol. 2015;3:75.
  • Talaiekhozan A , KeyvanfarA, ShafaghatA, et al. A review of self-healing concrete research development. J Environ Treatment Techniq. 2014;2(1):1–11.
  • De Belie N , WangJ. Bacteria-based repair and self-healing of concrete. J Sustain Cement-Based Mater. 2016;5(1–2):35–56.
  • Wang J , ErsanYC, BoonN, et al. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol. 2016;100(7):2993–3007.
  • Lee YS , ParkW. Current challenges and future directions for bacterial self-healing concrete. Appl Microbiol Biotechnol. 2018;102(7):3059–3070.
  • Chaparro-Acuña SP , Becerra-JiménezML, Martínez-ZambranoJJ, et al. Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process. Acta Agron. 2018;67(2):277–288.
  • Diender M , OlmIP, SousaDZ. Synthetic co-cultures: novel avenues for bio-based processes. Curr Opin Biotechnol. 2021;67:72–79.
  • Mauri M , Jean-LucG, Hidde DeJ, et al. Enhanced production of heterologous proteins by a synthetic microbial community: conditions and trade-offs. PLoS Comput Biol. 2020;16(4):e1007795.
  • Qian X , ChenL, SuiY, et al. Biotechnological potential and applications of microbial consortia. Biotechnol Adv. 2020;40:107500.
  • Hoffmann TD , ReekstingBJ, GebhardS. Bacteria-induced mineral precipitation: a mechanistic review. Microbiology. 2021;167(4):001049.
  • Skevi L , ReekstingBJ, HoffmannTD, et al. Incorporation of bacteria in concrete: the case against MICP as a means for strength improvement. Cem Concr Compos. 2021;120:104056.
  • Zhang JL , WuRS, LiYM, et al. Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Appl Microbiol Biotechnol. 2016;100(15):6661–6670.
  • Abdulkareem M , AyeronfeF, Abd MajidMZ, et al. Evaluation of effects of multi-varied atmospheric curing conditions on compressive strength of bacterial (Bacillus subtilis) cement mortar. Constr Build Mater. 2019;218:1–7.
  • Nguye H , ImamotoK, KiyoharaC. 2020. Compressive Strength Improvement and Water Permeability of Self-Healing Concrete Using Bacillus Subtilis Natto. XV International Conference on Durability of Building Materials and Components (DBMC).
  • Dinarvand P , RashonA. Review of the potential application of bacteria in self-healing and the improving properties of concrete/mortar. J Sustain Cement-Based Mater. 2021;2021:1–34.
  • Wang D , WangQ, HuangZ. New insights into the early reaction of NaOH-activated slag in the presence of CaSO4. Compos Part B: Eng. 2020;198:108207.
  • Rao R , KumarU, VokunnayaS, et al. Effect of Bacillus flexus in healing concrete structures. Int J Innov Res Sci Eng Technol. 2015;4(8):7273–7280.
  • Shashank BS , DhannurB, RavishankarHN, et al. Study on strength and self-healing behaviour of bio-concrete. Civil Environ Res. 2018;10(2):59–67.
  • Molyneux K. Bacterial concrete: a sustainable building material with advantageous properties. Youth STEM Matters. 2020;1(1).
  • Achal V , MukerjeeA, ReddyMS. Biogenic treatment improves durability and remediates the cracks of concrete structures. Constr Build Mater. 2013;48:1–5.
  • Alshalif AF , JukiMI, OthmanN, et al. Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus. Environ Eng Res. 2019;24(4):630–637.
  • Luo M , QianC, LiR. Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Constr Build Mater. 2015;87:1–7.
  • Tziviloglou E , WiktorV, JonkersHM, et al. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr Build Mater. 2016;122:118–125.
  • Balam NH , MostofinejadD, EftekharM. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate. Constr Build Mater. 2017;145:107–116.
  • Choi SG , WangK, WenZ, et al. Mortar crack repair using microbial induced calcite precipitation method. Cem Concr Compos. 2017;83:209–221.
  • Shashank BS , NagarajaPS. Durability studies on low-strength bacterial concrete. In: BiswasS, MetyaS, KumarS, SamuiP (eds). Advances in sustainable construction materials. Lecture notes in civil engineering, 124. Springer, New York, NY, 2021.
  • Wang Q , WangD, ZhuangS. The soundness of steel slag with different free CaO and MgO contents. Constr Build Mater. 2017;151:138–146.
  • Siddique RV , NandaEH, KadriMI, et al. Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Constr Build Mater. 2016;106:461–469.
  • Reda FM , HassaneinWA, MoabedS, et al. Potential exploitation of Bacillus flexus biofilm against the cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Egypt J Biol Pest Control. 2020;30(1):1–7.
  • Rajitha K , NancharaiahYV, VenugopalanVP. 2020. Acid soluble extracellular matrix confers structural stability to marine Bacillus haynesii pellicle biofilms. Colloid Surf B: Biointerfaces. 2020:111160.
  • Tepe M , ArslanŞ, KoralayT, et al. Precipitation and characterization of CaCO3 of Bacillus amyloliquefaciens U17 strain producing urease and carbonic anhydrase. Turk J Biol. 2019;43(3):198–208.
  • Kalhori H , BagherpourR. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Constr Build Mater. 2017;148:249–260.
  • Chen H , QianC, HuangH. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr Build Mater. 2016;126:297–303.
  • Chaerun SK , SyarifR, WattimenaRK. Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence. Sci Rep. 2020;10(1):1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.