257
Views
2
CrossRef citations to date
0
Altmetric
Articles

Compressive strength and microstructure of alkali-activated waste glass-slag cements

, &

References

  • Pour-Ghaz M. Sustainable infrastructure materials: challenges and opportunities. Int J Appl Ceram Technol. 2013;10(4):584–592.
  • Shi C, Krivenko PV, Della R. Alkali-Activated cements and concrete. 1st ed. New York (NY): Taylor & Francis; 2006.
  • Zhang Z, Zhu Y, Yang T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag. J Clean Prod. 2017;141:463–471.
  • Perez-Cortes P, Escalante-Garcia JI. Alkali activated metakaolin with high limestone contents – statistical modeling of strength and environmental and cost analyses. Cem Concr Compos. 2020;106:103450.
  • Menchaca-Ballinas LE, Escalante-Garcia JI. Low CO2 emission cements of waste glass activated by CaO and NaOH. J Clean Prod. 2019;239:117992.
  • Fernández-Jiménez A, Palomo JG, Puertas F. Alkali-activated slag mortars: mechanical strength behaviour. Cem Concr Res. 1999;29(8):1313–1321.
  • Wang S-D, Pu X-C, Scrivener KL, et al. Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res. 1995;7(27):93–102.
  • McLellan BC, Williams RP, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Clean Prod. 2011;19(9–10):1080–1090.
  • Puertas F, Torres-Carrasco M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res. 2014;57:95–104.
  • Gołek Ł, Szudek W, Błądek M, et al. The influence of ground waste glass cullet addition on the compressive strength and microstructure of Portland cement pastes and mortars. Cem Wapno Bet. 2020;2020:480–494.
  • Nahi S, Leklou N, Khelidj A, et al. Properties of cement pastes and mortars containing recycled green glass powder. Constr Build Mater. 2020;262:120875.
  • CSA-A3000-18 standard. Cementitious materials compendium.Toronto (TOR): Canadian Standards Association 2018.
  • Giannopoulou I, Panias D. Hydrolytic stability of sodium silicate gels in the presence of aluminum. J Mater Sci. 2010;45(19):5370–5377.
  • Bădănoiu AI, Abood Al-Saadi TH, Voicu G. Synthesis and properties of new materials produced by alkaline activation of glass cullet and red mud. Int J Miner Process. 2015;135:1–10.
  • Redden R, Neithalath N. Microstructure, strength, and moisture stability of alkali activated glass powder-based binders. Cem Concr Compos. 2014;45:46–56.
  • Marchand B, Lanier S, Davy CA, et al. Are calcium silicate hydrates (C-S-H) present in alkali-activated glass cullet cement? Mater Lett. 2018;219:104–108.
  • Menchaca-Ballinas LE, Escalante-García JI. Limestone as aggregate and precursor in binders of waste glass activated by CaO and NaOH. Constr Build Mater. 2020;262:120013.
  • Burciaga-Díaz O, Diaz-Guillen A, Durón-Sifuentes M, et al. Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin. Cem Concr Compos. 2020;107:103492.
  • Stoleriu S, Vlasceanu IN, Dima C, et al. Alkali activated materials based on glass waste and slag for thermal and acoustic insulation. Mater Constr. 2019;69:1–10.
  • Puertas F, Torres-Carrasco M, Alonso MM. Reuse of urban and industrial waste glass as a novel activator for alkali-activated slag cement pastes: a case study. In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P. Handbook of alkali-activated cements, mortars and concretes. Cambridge, UK: Elsevier, 2015. p. 75–109.
  • Vinai R, Soutsos M. Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem Concr Res. 2019;116:45–56.
  • Martinez-Lopez R, Escalante-Garcia JI. Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: strength as a function of the composition. Constr Build Mater. 2016;119:119–129.
  • Zhang L, Yue Y. Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology. Constr Build Mater. 2018;181:527–534.
  • Ranjit KR. A primer on the taguchi method. 2nd ed. Dearborn (MI): Society of Manufacturing Engineers; 1990.
  • Menchaca-Ballinas LE, Gorokhovsky AV, Escalante-Garcia JI. Waste glass as a precursor in sustainable hydraulic cements activated with CaO-NaOH-Na2CO3. Constr Build Mater. 2021;302:124099.
  • Massiot G, Fayon D, Carpon F, et al. DMFIT. 2002. http://nmr.cemhti.cnrs-orleans.fr/dmfit/.
  • Awoyera P, Adesina A. A critical review on application of alkali activated slag as a sustainable composite binder, case stud. Constr Mater. 2019;11:e00268.
  • Samarakoon MH, Ranjith PG, De Silva V. Effect of soda-lime glass powder on alkali-activated binders: rheology, strength and microstructure characterization. Constr Build Mater. 2020;241:118013.
  • Scherer GW. Structure and properties of gels. Cem Concr Res. 1999;29(8):1149–1157.
  • Scherer GW. Aging and drying of gels. J Non Cryst Solids. 1988;100(1-3):77–92.
  • Visser J. Fundamentals of alkali-silica gel formation and swelling: condensation under influence of dissolved salts. Cem Concr Res. 2018;105:18–30.
  • Brinker CJ, Scherer GW. Sol-Gel-Glass I: gelation and gel structure. J Non Cryst Solids. 1985;70(3):301–322.
  • Smith DM, Scherer GW, Anderson JM. Shrinkage during drying of silica gel. J Non Cryst Solids. 1995;188(3):191–206.
  • Davidovits J. Geopolymer chemistry and applications.Saint-Quentin, France: Geopolymer Institute, 2008.
  • Jiang C, Jin C, Wang Y, et al. Effect of heat curing treatment on the drying shrinkage behavior and microstructure characteristics of mortar incorporating different content ground granulated blast-furnace slag. Constr Build Mater. 2018;186:379–387.
  • Ma Y, Ye G. The shrinkage of alkali activated fly ash. Cem Concr Res. 2015;68:75–82.
  • Hou X, Struble LJ, Kirkpatrick RJ. Formation of ASR gel and the roles of C-S-H and portlandite. Cem Concr Res. 2004;34(9):1683–1696.
  • Tambelli CE, Schneider JF, Hasparyk NP, et al. Study of the structure of alkali-silica reaction gel by high-resolution NMR spectroscopy. J Non Cryst Solids. 2006;352(32-35):3429–3436.
  • Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkali-activated slag. Cem Concr Res. 1994;24(6):1033–1043.
  • Kim MS, Jun Y, Lee C, et al. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem Concr Res. 2013;54:208–214.
  • Kusaka K, Hagiya K, Ohmasa M, et al. Determination of structures of Ca2CoSi2O7, Ca2MgSi2O7,and Ca2(mgo.55 Fe0.45)Si2O7 in incommensurate and normal phases and observation of diffuse streaks at high temperature. Phys Chem Miner. 2001;28(3):150–166.
  • Sitepu H. Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich Ni50.7Ti49.30 alloy. Powder Diffr. 2009;24(4):315–326.
  • Merlino S, Bonaccorsi E, Armbruster T. The real structures of clinotobermorite and tobermorite 9 Å OD character, polytypes, and structural relationships. Eur J Mineral. 2000;12(2):411–429.
  • Levien L, Prewitt CT, Weidner DJ. Structure and elastic properties of quartz at pressureP = 1 atm. Am Mineral. 1980;65:920–930.
  • Ballekere Kumarappa D, Peethamparan S, Ngami M. Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem Concr Res. 2018;109:1–9.
  • Escalante-Garcia J-I, Sharp JH. The chemical composition and microstructure of hydration products in blended cements. Cem Concr Compos. 2004;26(8):967–976.
  • Schilling PJ, Butler LG, Roy A, et al. Si and Al MAS-NMR of NaOH-activated blast-furnace slag. J Am Ceram Soc. 1994;77(9):2363–2380.
  • Burciaga-Díaz O, Betancourt-Castillo I. Characterization of novel blast-furnace slag cement pastes and mortars activated with a reactive mixture of MgO-NaOH. Cem Concr Res. 2018;105:54–63.
  • Alharbi N, Varela B, Hailstone R. Alkali-activated slag characterization by scanning electron microscopy, X-ray microanalysis and nuclear magnetic resonance spectroscopy. Mater Charact. 2020;168:110504.
  • Puertas F, Palacios M, Manzano H, et al. A model for the C-A-S-H gel formed in alkali-activated slag cements. J Eur Ceram Soc. 2011;31(12):2043–2056.
  • Aboulayt A, Souayfan F, Roziere E, et al. Alkali-activated grouts based on slag-fly ash mixtures: from early-age characterization to long-term phase composition. Constr Build Mater. 2020;260:120510.
  • Escalante-García JI, Fuentes AF, Gorokhovsky A, et al. Hydration products and reactivity of Blast-Furnace slag activated by various alkalis. J Am Ceram Soc. 2003;86(12):2148–2153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.