2,359
Views
2
CrossRef citations to date
0
Altmetric
Articles

Utilization of waste glass in alkali activated slag/fly ash blends: reaction process, microstructure, and chloride diffusion behavior

, , &

References

  • Baščarevć Z. The resistance of alkali-activated cement-based binders to chemical attack. Handb Alkali-Activated Cem Mortars Concr. 2015;373–396.
  • Giergiczny Z. Fly ash and slag. Cem Concr Res. 2019;124:105826.
  • Topçu IB, Canbaz M. Properties of concrete containing waste glass. Cem Concr Res. 2004;34(2):267–274.
  • Du H, Tan KH. Properties of high volume glass powder concrete. Cem Concr Compos. 2017;75:22–29.
  • Du H, Tan KH. Waste glass powder as cement replacement in concrete. ACT. 2014;12(11):468–477.
  • Zhang S, Keulen A, Arbi K, et al. Cement and concrete research waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem Concr Res. 2017;102:29–40.
  • Liu G, Florea MVA, Brouwers HJH. Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortars. J Clean Prod. 2019;235:461–472.
  • Tashima MM, Soriano L, Borrachero M V., et al. Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. J Sustain Cem Mater. 2012;1:83–93.
  • Si R, Dai Q, Guo S, et al. Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder. J Clean Prod. 2020;242:118502.
  • Torres-Carrasco M, Tognonvi MT, Tagnit-Hamou A, et al. Durability of alkali-activated slag concretes prepared using waste glass as alternative activator. ACI Mater J. 2015;112:791–800.
  • Osborne GJ. Durability of Portland blast-furnace slag cement concrete. Cem Concr Compos. 1999;21(1):11–21.
  • Khan HA, Khan MSH, Castel A, et al. Deterioration of alkali-activated mortars exposed to natural aggressive sewer environment. Constr Build Mater. 2018;186:577–597.
  • Yuan Y, Ji Y. Modeling corroded section configuration of steel bar in concrete structure. Constr Build Mater. 2009;23(6):2461–2466.
  • Monticelli C, Natali ME, Balbo A, et al. Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization. Cem Concr Res. 2016;80:60–68.
  • Law DW, Adam AA, Molyneaux TK, et al. Durability assessment of alkali activated slag (AAS) concrete. Mater Struct. 2012;45(9):1425–1437.
  • Puertas F, Torres-Carrasco M. Cement and concrete research use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res. 2014;57:95–104.
  • Yazici H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Build Environ. 2007;42:2083–2089.
  • Kärger J, Valiullin R. Diffusion in porous media. Encycl Magn Reson. 2011.
  • Yi S-Y, Fan L-W, Fu J-H, et al. Experimental determination of the water vapor diffusion coefficient of autoclaved aerated concrete (AAC) via a transient method: effects of the porosity and temperature. Int J Heat Mass Transf. 2016;103:607–610.
  • Chang X, Yang X, Zhou W, et al. Influence of glass powder on hydration kinetics of composite cementitious materials. Adv Mater Sci Eng. 2015;2015:1–7.
  • Yin B, Kang T, Kang J, et al. Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics. Appl Clay Sci. 2018;166:146–158.
  • Bumanis G, Vitola L, Bajare D, et al. Impact of reactive SiO2/Al2O3 ratio in precursor on durability of porous alkali activated materials. Ceram Int. 2017;43(7):5471–5477.
  • Torres-Carrasco M, Puertas F. Waste glass as a precursor in alkaline activation: chemical process and hydration products. Constr Build Mater. 2017;139:342–354.
  • Richardson IG. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cem Concr Res. 2004;34(9):1733–1777.
  • EN 196-3. En 196-1. 2005:1–33.
  • Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cem Concr Res. 2010;40:1723–1733.
  • Standard E. En 196-1. 2005:1–33.
  • NORDTEST NT build 443. Nordtest. 1995:1–5.
  • CEN. Characterisation of waste - Leaching - Compliance test for leaching of granular waste materials and sludges - Part 1. CEN. 2002.
  • Yang Z, Jiang J, Jiang X, et al. The influence of sodium sulfate and magnesium sulfate on the stability of bound chlorides in cement paste. Constr Build Mater. 2019;228; 116775.
  • Davidovits J, Quentin S. Geopolymers inorganic polymerie new materials. J Therm Anal. 1991;37(8):1633–1656.
  • Oelkers EH, Gislason SR. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25 °C and pH _ 3 and 11. Geochim Cosmochim Acta. 2001;65(21):3671–3681.
  • Provis JL, Bernal SA. Geopolymers and related alkali-activated materials. Annu Rev Mater Res. 2014;44(1):299–329.
  • Lu J, Lu Z, Peng C, et al. Influence of particle size on sinterability, crystallisation kinetics and flexural strength of wollastonite glass-ceramics from waste glass and fly ash. Mater Chem Phys. 2014;148(1–2):449–456.
  • Garboczi EJ, Riding KA, Mirzahosseini M. Particle shape effects on particle size measurement for crushed waste glass. Adv Powder Technol. 2017;28(2):648–657.
  • Liu T, Chen Y, Yu Q, et al. Effect of MgO, Mg-Al-NO3 LDH and calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends. Constr Build Mater. 2020;250:118865.
  • McCaslin ER, White CE. A parametric study of accelerated carbonation in alkali-activated slag. Cem Concr Res. 2021;145; 106454.
  • Whittaker M, Zajac M, Ben Haha M, et al. The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cem Concr Res. 2014;66:91–101.
  • Liu G, Florea MVA, Brouwers HJH. Performance evaluation of sustainable high strength mortars incorporating high volume waste glass as binder. Constr Build Mater. 2019;202:574–588.
  • Hwang C-L, Vo D-H, Tran V-A, et al. Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Constr Build Mater. 2018;186:503–513.
  • Zhang Y, Xiao R, Jiang X, et al. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J Clean Prod. 2020;273; 122970.
  • Wang PZ, Trettin R, Rudert V. Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems. Adv Cem Res. 2005;17(4):161–166.
  • Liu T, Yu Q, Brouwers HJH. In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: The role of Al-O tetrahedra. Cem Concr Res. 2022;153; 106697
  • Liu S, Hao Y, Ma G. Approaches to enhance the carbonation resistance of fly ash and slag based alkali-activated mortar- experimental evaluations. J Clean Prod. 2021;280; 124321.
  • McGlashan ML. Manual of symbols and terminology for physicochemical quantities and units. Pure Appl Chem. 1970;21(1):1–44.
  • Skinner LB, Chae SR, Benmore CJ, et al. Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett. 2010;104, 195502.
  • Fang G, Zhang M. Multiscale micromechanical analysis of alkali-activated fly ash-slag paste. Cem Concr Res. 2020;135; 106141.
  • Hu X, Shi C, Shi Z, et al. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cem Concr Compos. 2019;104;103392
  • Babaee M, Castel A. Water vapor sorption isotherms, pore structure, and moisture transport characteristics of alkali-activated and Portland cement-based binders. Cem Concr Res. 2018;113:99–120.
  • Shi C. Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cem Concr Res. 2004;34(3):537–545.
  • Noushini A, Castel A, Aldred J, et al. Chloride diffusion resistance and chloride binding capacity of fly ash based geopolymer concrete. Cem Concr Compos. 2020;105; 103290
  • Hu X, Shi C, Shi Z, et al. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cem Concr Compos. 2019; 104; 103392.
  • Hasholt MT, Christensen KU, Pade C. Frost resistance of concrete with high contents of fly ash - A study on how hollow fly ash particles distort the air void analysis. Cem Concr Res. 2019;119:102–112.
  • Zhou Q, Lu C, Wang W, et al. Effect of fly ash and sustained uniaxial compressive loading on chloride diffusion in concrete. J Build Eng. 2020;31; 101394.
  • Qu ZY, Yu QL, Brouwers HJH. Relationship between the particle size and dosage of LDHs and concrete resistance against chloride ingress. Cem Concr Res. 2018;105:81–90.
  • Shanmuganathan K, Ellison CJ. Layered double hydroxides. Polym Green Flame Retard. 2014:675–707.
  • Hou D, Li T, Han Q, et al. Insight on the sodium and chloride ions adsorption mechanism on the ettringite crystal: structure, dynamics and interfacial interaction. Comput Mater Sci. 2018;153:479–492.