911
Views
8
CrossRef citations to date
0
Altmetric
Articles

Life cycle assessment (LCA) and multi-criteria decision-making (MCDM) analysis to determine the performance of 3D printed cement mortars and geopolymers

, , , , , ORCID Icon & ORCID Icon show all

References

  • ARGOS_360, Caracterización de impactos ambientales en la industria de la construcción, (2020). [cited May 25, 2020]. https://www.360enconcreto.com/blog/detalle/impactos-ambientales-en-la-industria-de-la-construccion.
  • UEPG, European aggregates association a sustainable industry for a sustainable Europe, 2017. [cited May 25, 2020]. www.uepg.eu.
  • Lehne J, Preston F. Concrete change innovation in low-carbon cement and concrete. London: Chatham Ho, The Royal Institute of International Affairs, 2018. [cited May 25, 2020]. https://reader.chathamhouse.org/making-concrete-change-innovation-low-carbon-cement-and-concrete#.
  • Medina C, Sáez del Bosque IF, Asensio E, et al. New additions for eco-efficient cement design. Impact on calorimetric behavior and comparison of test methods. Mater Struct. 2016;49(11):4595–4607.
  • Asensio E, Medina C, Frías M, et al. Characterization of Ceramic-Based construction and demolition waste: use as pozzolan in cements. J. Am. Ceram. Soc. 2016;99(12):4121–4127.
  • Islam GS, Rahman MH, Kazi N. Waste glass powder as partial replacement of cement for sustainable concrete practice. Int. J. Sustain. Built Environ. 2017;6(1):37–44.
  • Pan S-C, Tseng D-H, Lee C-C, et al. Influence of the fineness of sewage sludge ash on the mortar properties. Cem. Concr. Res. 2003;33(11):1749–1754.
  • Juenger MCG, Snellings R, Bernal SA. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019;122:257–273.
  • Li J, Zhang W, Li C, et al. Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. J. Clean. Prod. 2020;261:121224.
  • Miller SA. Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing? J. Clean. Prod. 2018;178:587–598.
  • Li J, Zhang W, Li C, et al. Green concrete containing diatomaceous earth and limestone: workability, mechanical properties, and life-cycle assessment. J. Clean. Prod. 2019;223:662–679.
  • J, DavidovitsGeopolymer. Chemistry and application, 3rd ed., Institut Géopolymère, 2011. www.geopolymer.org.
  • Zhu X, Zhang Z, Yang K, et al. Characterisation of pore structure development of alkali-activated slag cement during early hydration using electrical responses. Cem. Concr. Compos. 2018;89:139–149.
  • Zhu X, Zhang M, Yang K, et al. Setting behaviors and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cem. Concr. Compos. 2020;114:103782.
  • Garcia-Lodeiro I, Fernández-Jimenez A, Palomo A. Cements with a low clinker content: versatile use of raw materials. J. Sustain. Cem. Mater. 2015;4(2):140–151.
  • Medina C, Zhu W, Torsten H, et al. Influence of mixed recycled aggregate on the physical – mechanical properties of recycled concrete. J. Clean. Prod. 2014;68:216–225.
  • Gonzalez-Corominas A, Etxeberria M, Poon C-S. Influence of the quality of recycled aggregates on the mechanical and durability properties of high performance concrete. Waste Biomass Valor. 2017;8(5):1421–1432.
  • López-Uceda A, Ayuso J, López M, et al. Properties of non-structural concrete made with mixed recycled aggregates and low cement content. Materials. 2016;9(2):74.
  • Provis JL, Bernal SA. Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 2014;44(1):299–327.
  • Provis JL. Geopolymers and other alkali activated materials: why, how, and what? Mater Struct. 2014;47(1-2):11–25.
  • Lecomte I, Henrist C, Liégeois M, et al. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 2006;26(16):3789–3797.
  • Junaid MT, Kayali O, Khennane A, et al. A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr. Build. Mater. 2015;79:301–310.
  • Zhang P, Zheng Y, Wang K, et al. A review on properties of fresh and hardened geopolymer mortar. Composites. 2018;152:79–95.
  • Yan B, Duan P, Ren D. Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceram. Int. 2017;43(1):1052–1060.
  • Meesala CR, Verma NK, Kumar S. Critical review on fly‐ash based geopolymer concrete. Struct. Concr. 2019;1–16.
  • Duxson P, Provis JL, Lukey GC, et al. The role of inorganic polymer technology in the development of “green concrete”. Cem. Concr. Res. 2007;37(12):1590–1597.
  • Teh SH, Wiedmann T, Castel A, et al. Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. J. Clean. Prod. 2017;152:312–320.
  • Salas DA, Ramirez AD, Ulloa N, et al. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 2018;190:170–177.
  • Passuello A, Rodríguez ED, Hirt E, et al. Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. J. Clean. Prod. 2017;166:680–689.
  • Bajpai R, Choudhary K, Srivastava A, et al. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020;254:120147.
  • Muñoz I, Alonso-Madrid J, Menéndez-Muñiz M, et al. Life cycle assessment of integrated additive-subtractive concrete 3D printing. Int J Adv Manuf Technol. 2021;112(7-8):2149–2159.
  • Alhumayani H, Gomaa M, Soebarto V, et al. Environmental assessment of large-scale 3D printing in construction: a comparative study between cob and concrete. J. Clean. Prod. 2020;270:122463.
  • Mohammad M, Masad E, Al-Ghamdi SG. 3D concrete printing sustainability: a comparative life cycle assessment of four construction method scenarios. Buildings. 2020;10(12):245.
  • Han Y, Yang Z, Ding T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete. J. Clean. Prod. 2021;278:123884.
  • Siddika A, Abdullah_Al_Mamum M, Ferdous W, et al. 3D-printed concrete: applications, performance, and challenges. J. Sustain. Cem. Mater. 2019.
  • El-Sayegh S, Romdhane L, Manjikian S. A critical review of 3D printing in construction: benefits, challenges, and risks. Arch. Civ. Mech. Eng. 2020;20
  • Elizondo-Martínez E, Andrés-Valeri V, Rodríguez-Hernández J, et al. Selection of additives and fibers for improving the mechanical and safety properties of porous concrete pavements through multi-criteria decision-making analysis, 2020.
  • Hafezalkotob A, Hafezalkotob A. Extended MULTIMOORA method based on shannon entropy weight for materials selection. J Ind Eng Int. 2016;12(1):1–13.
  • Mardani A, Nilashi M, Zakuan N, et al. A systematic review and meta-analysis of SWARA and WASPAS methods: theory and applications with recent fuzzy developments. Appl. Soft Comput. 2017;57:265–292.
  • Slebi-Acevedo CJ, Pascual-Muñoz P, Lastra-González P, et al. A multi-criteria decision-making analysis for the selection of fibres aimed at reinforcing asphalt concrete mixtures. Int. J. Pavement Eng. 2019;0:1–17.
  • Ly O, Yoris-Nobile AI, Sebaibi N, et al. Optimisation of 3D printed concrete for artificial reefs: biofouling and mechanical analysis. Constr. Build. Mater. 2021;272:121649.
  • Yao ZT, Ji XS, Sarker PK, et al. A comprehensive review on the applications of coal fly ash. Earth-Science Rev. 2015;141:105–121.
  • Gollakota ARK, Volli V, Shu CM. Progressive utilisation prospects of coal fly ash: a review. Sci Total Environ. 2019;672:951–989.
  • Xie T, Ozbakkaloglu T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 2015;41(4):5945–5958.
  • Assi LN, Deaver E, ElBatanouny MK, et al. Investigation of early compressive strength of fly ash-based geopolymer concrete. Constr. Build. Mater. 2016;112:807–815.
  • Rashidian-Dezfouli H, Rangaraju PR. A comparative study on the durability of geopolymers produced with ground glass fiber, fly ash, and glass-powder in sodium sulfate solution. Constr. Build. Mater. 2017;153:996–1009.
  • Görhan G, Kürklü G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. Part B Eng. 2014;58:371–377.
  • R, Abbas MA, Khereby H, Y, Ghorab, et al. Preparation of geopolymer concrete using egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Techn Environ Policy. 2020;22(3):669–687.
  • UNE-EN 933-1. Tests for geometrical properties of aggregates. Part 1: Determination of particle size distribution – Sieving method., AENOR – Asociación Española de Normalización y Certificación, 2012.
  • Rodríguez-Álvaro R. Morteros para revestimiento con árido procedente de concha de mejillón, Universidade da Coruña, 2014. [cited June 27, 2019]. https://ruc.udc.es/dspace/handle/2183/13632.
  • Martínez García C. Estudio del comportamiento de la concha de mejillón como árido para la fabricación de hormigones en masa: aplicación en la cimentación de un módulo experimental (Módulo Biovalvo), Universidade da Coruña, 2016. [cited June 27, 2019]. https://ruc.udc.es/dspace/handle/2183/17489.
  • Long W-J, Tao J-L, Lin C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. J. Clean. Prod. 2019;239:118054.
  • Buswell RA, Leal de Silva WR, Jones SZ, et al. 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 2018;112:37–49.
  • Estellé P, Lanos C, Perrot A, et al. Processing the vane shear flow data from couette analogy. Appl. Rheol. 2008;18:1–6.
  • Lanos C, Estellé P. Vers une réelle rhéométrie adaptée aux bétons frais. Eur. J. Environ. Civ. Eng. 2009;13(4):457–471.
  • Estellé P, Lanos C, Perrot A. Processing the couette viscometry data using a bingham approximation in shear rate calculation. J. Non-Newtonian Fluid Mech. 2008;154:31–38.
  • UNE-EN_196-1. Methods of testing cement. Part 1: determination of strength. AENOR – Asociación Española de Normalización y Certificación, 2018.
  • Ministerio_de_Fomento, Base de precios de referencia de la dirección generla de carreteras, 2016.
  • Solutions MB. Productos y sistemas BASF. Construction Chemicals España, S.L., 2017.
  • ISO_14040. Environmental Management – Life Cycle Assessment – Principles and Framework, 2 nd. International Organization for Standardization, 2006.
  • ISO_14044. Environmental Management – Life Cycle Assessment – Requirements and Guidelines, 1 edn. International Organization for Standardization, 2006.
  • Grist ER, Paine KA, Heath A, et al. The environmental credentials of hydraulic lime-pozzolan concretes. J. Clean. Prod. 2015;93:26–37.
  • NREL, U.S. Life Cycle Invent. Database, 2012.
  • Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013;43:125–130.
  • UNE-EN_15804, UNE-EN 15804:2012 + A1:2013. Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products, 2012.
  • Lizasoain-Arteaga E, Indacoechea-Vega I, Pascual-Muñoz P, et al. Environmental impact assessment of induction-healed asphalt mixtures. J. Clean. Prod. 2019;208:1546–1556.
  • Saaty T. The analytic hierarchy process, planning, priority setting, resource allocation, 1980.
  • Wang E, Alp N, Shi J, et al. Multi-criteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting. Energy. 2017;125:197–210.
  • Wang Z, Zhan W. Dynamic engineering multi-criteria decision making model optimized by entropy weight for evaluating bid. Syst. Eng. Procedia. 2012;5:49–54.
  • Hwang CL, Yoon K. Multiple attribute decision making: Methods and applications. Berlín: Springer 1981.
  • Zavadskas EK, Turskis Z, Antucheviciene J, et al. Optimization of weighted aggregated sum product assessment. Elektron. Ir Elektrotechnika. 2012;122:3–6.
  • Gholampour A, Ho VD, Ozbakkaloglu T. Ambient-cured geopolymer mortars prepared with waste-based sands: Mechanical and durability-related properties and microstructure. Compos. Part B Eng. 2019;160:519–534.
  • Chen P. Effects of normalization on the entropy-based TOPSIS method. Expert Syst Appl. 2019;136:33–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.