414
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Service life prediction of ballastless track concrete under the coupling effect of fatigue loads and environmental actions: a review

, , , , , & show all

References

  • Zhang JM, Zhang JR. Comprehensive evaluation of operating speeds for high-speed railway: a case study of china high-speed railway. Math Probl Eng. 2021;2021:1–16.
  • Shi JY, Liu BJ, Shen S, et al. Effect of curing regime on long-term mechanical strength and transport properties of steam-cured concrete. Constr Build Mater. 2020;255:119407.
  • Li HJ, Xie YJ. Progress and development trend of research on concrete structure durability in railway of China. Rail Eng. 2016;(2):1–8 (in Chinese).
  • Zhao GT. Study on temperature field monitoring and temperature deformation control measures of CRTS I and double block blastless track of high-speed railway[R]. Beijing: China Academy of Railway Sciences; 2015 (in Chinese).
  • Tarifa M, Zhang X, Ruiz G, et al. Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Eng Struct. 2015;100:610–621.
  • Sainz-Aja J, Carrascal I, Polanco JA, et al. Fatigue failure micromechanisms in recycled aggregate mortar by μCT analysis. J Build Eng. 2020;28:101027.
  • Feng QS, Sun K, Chen HP, et al. Long-term prediction of fatigue crack growth in ballastless track of high-speed railway due to cyclic train load. Constr Build Mater. 2021;292(123):123375.
  • Lu CF, Wu MY, Fu JB. Research on influence factors of durability of railway structures and related engineering practice. J China Railway Soc. 2018;40(5):1–10 (in Chinese).
  • TB 10005-2011. Code for durability design on concrete structure of railway. Beijing: China Railway Press; 2011.
  • Qiu QW. A state-of-the-art review on the carbonation process in cementitious materials: fundamentals and characterization techniques. Constr Build Mater. 2020;247:118503.
  • Li HJ, Xie YJ, Yi ZL, et al. Mixture ratio of railway concrete under chloride environment. J China Railway Soc. 2012;34(09):111–116 (in Chinese).
  • Pasupathy K, Sanjayan J, Rajeev P, et al. The effect of chloride ingress in reinforced geopolymer concrete exposed in the marine environment. J Build Eng. 2021;39:102281.
  • Mu S, Li HJ, Wang YJ, et al. Durability theory and improvement method of concrete in railway engineering. Railw Eng. 2018;58(11):20–25 (in Chinese).
  • Li JQ, Wu ZM, Shi CJ, et al. Durability of ultra-high performance concrete – a review. Constr Build Mater. 2020;255:119296.
  • Li HJ, Xie YJ. Introduction to specifications for the durability design of railway concrete structures. Railw Stand Des. 2011;(8):94–96 + 104 (in Chinese).
  • Chen R, Yang K, Qiu XJ, et al. Degradation mechanism of CA mortar in CRTS I slab ballastless railway track in the southwest acid rain region of China – materials analysis. Constr Build Mater. 2017;149:921–933.
  • TB 10621-2014. Code for design of high speed railway. Beijing: China Railway Press; 2014.
  • Sainz-Aja JA, Carrascal IA, Polanco JA, et al. Effect of temperature on fatigue behaviour of self-compacting recycled aggregate concrete. Cem Concr Compos. 2022;125:104309.
  • Lee MK, Barr BIG. An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cem Concr Compos. 2004;26(4):299–305.
  • Skarżyński Ł, Marzec I, Tejchman J. Fracture evolution in concrete compressive fatigue experiments based on X-ray micro-CT images. Int J Fatigue. 2019;122:256–272.
  • Gao LB, Hsu TTC. Fatigue of concrete under uniaxial compression cyclic loading. Aci Mater J. 1998;95(5):575–581.
  • Wang YP, Li J. A review of theoretical study of concrete fatigue. J Tongji Univ (Nat Sci). 2021;49(5):617–623 (in Chinese).
  • Wang HL, Song YP. Fatigue capacity of plain concrete under fatigue loading with constant confined stress. Mater Struct. 2011;44(1):253–262.
  • Sain T, Kishen JMC. Prediction of fatigue strength in plain and reinforced concrete beams. Aci Struct J. 2007;104(5):621–628.
  • Skar A, Poulsen PN, Olesen JF. A simple model for fatigue crack growth in concrete applied to a hinge beam model. Eng Fract Mech. 2017;181:38–51.
  • Xu YJ, Yuan H. Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods. Eng Fract Mech. 2009;76(2):165–181.
  • Walraven, Bigaj-van Vliet, Balázs, et al. fib model code for concrete structures 2010. Lausanne: Ernst & Sohn GmbH & Co. KG; 2013.
  • JSCE Committee. Standard specification for concrete structures. Tokyo: Japan Society of Civil Engineers; 2007.
  • GB 50010—2010. Code for design of concrete structures. Beijing: China Architecture & Building Press, 2010 (in Chinese).
  • Kachkouch FZ, Noberto CC, De Albuquerque Lima Babadopulos LF, et al. Fatigue behavior of concrete: a literature review on the main relevant parameters. Constr Build Mater. 2022;338:127510.
  • Tepfers R. Tensile fatigue strength of plain concrete. J Proc. 1979;76(8):919–934.
  • Yang XM. Fatigue life analysis on ballastless track structures in turnout zone under complex loads [Master’s Dissertation]. Beijing: Beijing Jiaotong University, 2017 (in Chinese).
  • Hanson JM, Somes M, Helagson T. Investigation of design factors affecting fatigue strength of reinforcing Bars-Test program. Spec Publ. 1974;41:71–106.
  • Schneider S, Vöcker D, Marx S. Zum einfluss der belastungsfrequenz und der spannungsgeschwindigkeit auf die ermüdungsfestigkeit von beton. Beton‐Und Stahlbetonbau. 2012;107(12):836–845.
  • Zhang B, Phillips DV, Wu K. Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag Concrete Res. 1996;48(177):361–375.
  • Wen JX, Li HJ, Yang ZQ, et al. Dynamic performance and evaluation method on of high-speed railway ballastless track structural concrete. J China Railway Soc. 2022 (Submitted) (in Chinese).
  • Lutes LD, Corazao M, Hu S-L, et al. Stochastic fatigue damage accumulation. J Struct Eng. 1984;110(11):2585–2601.
  • Yang Y, Zhang GJ, Wu G, et al. Study on fatigue damage laws and life prediction of CRTS-II ballastless track slab. Eng Struct. 2022;252:113659.
  • Zhao L, Zhou LY, Yu ZW, et al. Experimental study on CRTS II ballastless track-bridge structural system mechanical fatigue performance. Eng Struct. 2021;244:112784.
  • Ren JJ, Tian GY, Xu JD, et al. Load effect and fatigue life prediction of prefabricated slab track for mixed passenger and freight railway. J China Railway Soc. 2019;41(3):110–116 (in Chinese).
  • Li SY, Yang RS. Research on fatigue life of CRTS-I slab ballastless track. Railw Stand Des. 2016; 60(3):34–37 (in Chinese).
  • Sanjuán M, Andrade C, Cheyrezy M. Concrete carbonation tests in natural and accelerated conditions. Adv Cem Res. 2003;15(4):171–180.
  • Salvoldi BG, Beushausen H, Alexander MG. Oxygen permeability of concrete and its relation to carbonation. Constr Build Mater. 2015;85:30–37.
  • Li G, Yuan YS, Liu X, et al. Influences of environment climate conditions on concrete carbonation rate. In: 2nd International Conference on Manufacturing Science and Engineering, Vol. 194–196; 2011. p. 904–908.
  • Liu ZY, Van Den Heede P, De Belie N. Effect of the mechanical load on the carbonation of concrete: a review of the underlying mechanisms, test methods, and results. Materials (Basel). 2021;14(16).
  • Xu H, Liu Y, Chen W, et al. Corrosion behavior of reinforcing steel in simulated concrete pore solutions: a scanning micro-reference electrode study. Electrochim Acta. 2009;54(16):4067–4072.
  • DuraCrete. Probabilistic performance based durability design: modeling of degradation. The Netherlands[R], The European Union – Brite Euram III; 1998 (DuraCrete Project Document BE95-1347/R4-5).
  • Papadakis VG, Vayenas CG, Fardis MN. Fundamental modeling and experimental investigation of concrete carbonation. Aci Mater J. 1991;88(4):12.
  • Jiang LH, Lin BY, Cai YB. A model for predicting carbonation of high-volume fly ash concrete. Cem Concr Res. 2000;30(5):699–702.
  • Felix EF, Carrazedo R, Possan E. Carbonation model for fly ash concrete based on artificial neural network: development and parametric analysis. Constr Build Mater. 2021;266:121050.
  • Kellouche Y, Ghrici M, Boukhatem B. Service life prediction of fly ash concrete using an artificial neural network. Front Struct Civ Eng. 2021;15(3):793–805.
  • Akpinar P, Uwanuakwa ID. Investigation of the parameters influencing progress of concrete carbonation depth by using artificial neural networks. Mater Construcc. 2020;70(337):e209.
  • Li DW, Li LY, Wang XF. Mathematical modelling of concrete carbonation with moving boundary. Int Commun Heat Mass Transfer. 2020;117:104809.
  • Saillio M, Baroghel-Bouny Ve Pradelle S, Bertin M, et al. Effect of supplementary cementitious materials on carbonation of cement pastes. Cem Concr Res. 2021;142:106358.
  • Lu EL, Li G, Yuan YS, et al. Studies about the initial curing conditions on the carbonation resistance of fly-ash concrete. Adv Mater Res. 2011;250–253:920–924.
  • Elsalamawy M, Mohamed AR, Kamal EM. The role of relative humidity and cement type on carbonation resistance of concrete. Alex Eng J. 2019;58(4):1257–1264.
  • Tuutti, K. Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, Stockholm. 1982.
  • Angst U, Elsener B, Larsen CK, et al. Critical chloride content in reinforced concrete – a review. Cem Concr Res. 2009;39(12):1122–1138.
  • Schiessl P, Raupach M. Influence of concrete composition and microclimate on the critical chloride content in concrete. In: Proceedings of the 3rd International Symposium “Corrosion of Reinforcement in Concrete”. Elsevier Applied Science, Wishaw, UK; 1990. p. 49–58.
  • Hájková K, Šmilauer V, Jendele L, et al. Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Eng Struct. 2018;174:768–777.
  • Liu QF, Easterbrook D, Yang J, et al. A three-phase, multi-component ionic transport model for simulation of chloride penetration in concrete. Eng Struct. 2015;86:122–133.
  • Truc O, Ollivier J-P, Nilsson L-O. Numerical simulation of multi-species diffusion. Mat. Struct. 2000;33(9):566–573.
  • Yang CC, Weng SH. A three-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials. Mag Concrete Res. 2013;65(3):193–201.
  • Xi YP, Bažant ZP. Modeling chloride penetration in saturated concrete. J Mater Civ Eng. 1999;11(1):58–65.
  • Pradelle S, Thiery M, Baroghel-Bouny V. Comparison of existing chloride ingress models within concretes exposed to seawater. Mater Struct. 2016;49(11):4497–4516 (English).
  • Collepardi M, Marcialis A, Turriziani R. Penetration of chloride ions into cement pastes and concretes. J Am Ceram Soc. 1972;55(10):534–535.
  • Bamforth PB. The derivation of input data for modelling chloride ingress from eight-year UK coastal exposure trials. Mag Concr Res. 1999;51(2):87–96.
  • DuraCrete. Probabilistic performance based durability design of concrete structures. The European Union – Brite Euram III; 2000; Netherlands.
  • Khatri RP, Sirivivatnanon V. Characteristic service life for concrete exposed to marine environments. Cem Concr Res. 2004;34(5):745–752.
  • Li QW, Li KF, Zhou XG, et al. Model-based durability design of concrete structures in Hong Kong–Zhuhai–Macau sea link project. Struct Saf. 2015;53:1–12.
  • Kwon SJ, Na UJ, Park SS, et al. Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion. Struct Saf. 2009;31(1):75–83.
  • Cao TN, Zhang LJ, Sun GW, et al. Simulation of chloride ion transport in concrete under wetting-drying cycle. J Sustain Cem Based Mater. 2020;9(5):270–288.
  • Fan YF, Zhang SY, Kawashima S, et al. Influence of kaolinite clay on the chloride diffusion property of cement-based materials. Cem Concr Compos. 2014;45:117–124.
  • Francois R, Arliguie G, Castel A. Influence of service cracking on service life of reinforced concrete In: Concrete Under Severe Conditions 2: Environment and Loading: Proceedings of the 2nd International Conference on Concrete Under Severe Conditions, CONSEC’98; 1998 June 21–24; Tromsϕ, Norway, p. 143–152.
  • Arnfelt H. Damage on concrete pavements by wintertime salt treatment, meddelande. Vol. 66. Stockholm: Statens Väginstitut; 1943.
  • Taheri BM, Ramezanianpour AM, Sabokpa S, et al. Experimental evaluation of freeze-thaw durability of pervious concrete. J Buid Eng. 2021;33:101617.
  • Valenza JJ, Scherer GW. A review of salt scaling: I. Phenomenology. Cem Concr Res. 2007;37(7):1007–1021.
  • Zhang WH, Pi YL, Kong WP, et al. Influence of damage degree on the degradation of concrete under freezing-thawing cycles. Constr Build Mater. 2020;260:119903.
  • Corte AE. Vertical migration of particles in front of a moving freezing plane. J Geophys Res. 1963;67(3):18.
  • Powers TC, Willis TF. The air requirement of frost resistant concrete. In: Highway Research Board – Proceedings of the Annual Meeting, Washington, D.C., Vol. 29; 1949. p. 183–211.
  • Powers TC, Helmuth RA. Theory of volume changes in hardened Portland-cement paste during freezing. In: Highway Research Board Proceedings, Washington, D.C., Vol. 32; 1953. p. 285–297.
  • Setzer MJ. Micro ice lens formation, artificial saturation and damage during freeze thaw attack. Mater Build Struct. 2000;6:175–182.
  • Valenza JJ, Scherer GW. A review of salt scaling: II. Mechanisms. Cem Concr Res. 2007;37(7):1022–1034.
  • Zhou TT, Mirzadeh M, Pellenq RJM, et al. Freezing point depression and freeze-thaw damage by nanofluidic salt trapping. Phys Rev Fluids. 2020;5(12):124201.
  • Fagerlund G. Modeling the service life of concrete exposed to frost. In: International Conference on Ion and Mass Transport in Cement-Based Materials, Toronto, Canada., 2001. p. 195–217.
  • Cho T. Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method. Constr Build Mater. 2007;21(12):2031–2040.
  • Xiao QH, Niu DT, Zhu WP. Strength degradation model and durability service life prediction of concrete in freezing-thawing circumstance. Build Struct. 2011; (S2):203–207. (in Chinese).
  • Chen FL, Qiao PZ. Probabilistic damage modeling and service-life prediction of concrete under freeze-thaw action. Mater Struct. 2015;48(8):2697–2711.
  • Smith SH, Qiao C, Suraneni P, et al. Service-life of concrete in freeze-thaw environments: critical degree of saturation and calcium oxychloride formation. Cem Concr Res. 2019;122:93–106.
  • Moradllo MK, Qiao C, Ghantous RM, et al. Quantifying the freeze-thaw performance of air-entrained concrete using the time to reach critical saturation modelling approach. Cem Concr Compos. 2020;106:103479.
  • Yu HF, Ma HX, Yan K. An equation for determining freeze-thaw fatigue damage in concrete and a model for predicting the service life. Constr Build Mater. 2017;137:104–116.
  • Xie SD, Qi L, Zhou D. Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmos Environ. 2004;38(27):4457–4466.
  • Kong HL, Orbison JG. Concrete deterioration due to acid precipitation. Aci Mater J. 1987;84(2):110–116.
  • Shi CJ, Stegemann JA. Acid corrosion resistance of different cementing materials. Cem Concr Res. 2000;30(5):803–808.
  • Dias CMR, Cincotto MA, Savastano H, et al. Long-term aging of fiber-cement corrugated sheets – the effect of carbonation, leaching and acid rain. Cem Concr Compos. 2008;30(4):255–265.
  • Chen MC, Wang KJ, Xie L. Deterioration mechanism of cementitious materials under acid rain attack. Eng Fail Anal. 2013;27:272–285.
  • Müllauer W, Beddoe RE, Heinz D. Sulfate attack expansion mechanisms. Cem Concr Res. 2013;52:208–215.
  • Wang ZH, Zhu ZM, Sun X, et al. Deterioration of fracture toughness of concrete under acid rain environment. Eng Fail Anal. 2017;77:76–84.
  • Niu JG. Concrete neutralization in the atmospherie environment based on multi-factor effects [Doctoral Dissertation]. Xi'an: Xi'an University of Architecture & Technology; 2008 (in Chinese).
  • Niu JG, Zhang B, Nu DT. Study on neutralization model for fly ash concrete subjected to acid rain. In: International Conference on Structures and Building Materials, Guangzhou, China, Vol. 163–167; 2011. p. 3401–3405.
  • Pavlík V. Corrosion of hardened cement paste by acetic and nitric acids part I: calculation of corrosion depth. Cem Concr Res. 1994;24(3):551–562.
  • CECS 762. Standard for indoor simulated environmental test method of concrete structure durability. Beijing: China Architecture & Building Press; 2020 (in Chinese).
  • Wang J. Effects of fatigue damage and cracks on concrete durability. Nanjing: Southeast University; 2008 (in Chinese).
  • Jiang C, Huang QH, Gu XL, et al. Experimental investigation on carbonation in fatigue-damaged concrete. Cem Concr Res. 2017;99:38–52.
  • Cui CX, Song L, Cheng GX, et al. Corrosion-fatigue life assessment of U-typed beam in urban rail transit under coupled action of carbonation and train loads. J Cent South Univ (Sci Tech). 2022;53(2):747–755 (in Chinese).
  • Dan L. Durability of ballastless slab track subjected to dynamic load and prediction of fatigue durability. Chengdu: Southeast Jiaotong University; 2012 (in Chinese).
  • Zhang DS, Yang QN, Mao MJ, et al. Carbonation performance of concrete with fly ash as fine aggregate after stress damage and high temperature exposure. Constr Build Mater. 2020;242:118125.
  • Lei B, Li WG, Li ZH, et al. Effect of cyclic loading deterioration on concrete durability: water absorption, freeze-thaw, and carbonation. J Mater Civil Eng. 2018;30(9):0418220.
  • Miao YY, Niu DT, Cheng N. Durability of concrete under the combined action of carbonization and fatigue loading of vehicles. Sci Adv Mater. 2019;11(12):1781–1787.
  • Han JD, Liu WQ, Wang SG, et al. Carbonation reaction and microstructural changes of metro-tunnel segment concrete coupled with static and fatigue load. J Mater Civ Eng. 2017;29(2):04016216.
  • Zhou YX, Niu DT, Miao YY, et al. An experimental study of carbonation of concrete under flexural fatigue. Ind Constr. 2016;46(8):123–126 (in Chinese).
  • Jiang JY, Sun W, Jin ZQ, et al. Service life prediction of structural concrete under coupled interactions of fatigue loading and carbonation factor. J Build Mater. 2010;13(3):304–309 (in Chinese).
  • Li S, Liu JL, Cui CX, et al. Carbonation process of reinforced concrete beams under the combined effects of fatigue damage and environmental factors. Appl Sci. 2020;10(11):3981.
  • Jiang C, Gu XL, Zhang WP, et al. Modeling of carbonation in tensile zone of plain concrete beams damaged by cyclic loading. Constr Build Mater. 2015;77:479–488.
  • Jiang C, Gu XL, Huang QH, et al. Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads. Cem Concr Compos. 2018;93:140–154.
  • Ouyang XS, Luo XY, Liu J, et al. Laboratory tests on the fatigue behavior of damaged reinforced concrete beams under constant-amplitude fatigue loading. Struct Concrete. 2021;22(6):3461–3475.
  • Lollini F, Redaelli E. Carbonation of blended cement concretes after 12 years of natural exposure. Constr Build Mater. 2021;276:122122.
  • Cui CX, Song L, Liu JL, et al. Corrosion-fatigue life prediction modeling for RC structures under coupled carbonation and repeated loading. Mathematics. 2021;9(24):3296.
  • You LS, Jiang LH, Chu HQ. Influence of carbonation on fatigue of concrete with high volume of ground granulated blast-furnace slag. J Wuhan Univ Technol-Mat Sci Edit. 2015;30(2):361–368.
  • Lu YY, Tang WS, Li S, et al. Effects of simultaneous fatigue loading and corrosion on the behavior of reinforced beams. Constr Build Mater. 2018;181:85–93.
  • Wang CH, Sun W, Jing JY, et al. The transport properties of concrete under the simultaneous coupling of fatigue load and environment factors. J Wuhan Univ Technol-Mat Sci Edit. 2012;27(1):181–186.
  • Imounga HM, Bastidas-Arteaga E, Pitti RM, et al. Bayesian assessment of the effects of cyclic loads on the chloride ingress process into reinforced concrete. Appl Sci-Basel. 2020;10(6).
  • Ahn W, Reddy DV. Galvanostatic testing for the durability of marine concrete under fatigue loading. Cem Concr Res. 2001;31(3):343–349.
  • Xiang TY, Zhao RD. Reliability evaluation of chloride diffusion in fatigue damaged concrete. Eng Struct. 2007;29(7):1539–1547.
  • Gerard B, Pijaudier-Cabot G, Laborderie C. Coupled diffusion-damage modelling and the implications on failure due to strain localisation. Int J Solids Struct. 1998;35(31-32):4107–4120.
  • Yang T, Guan BW, Liu GQ, et al. Service life prediction of chloride-corrosive concrete under fatigue load. Adv Concr Constr. 2019;8(1):55–64.
  • Jiang LH, Li CZ, Zhu CL, et al. The effect of tensile fatigue on chloride ion diffusion in concrete. Constr Build Mater. 2017;151:119–126.
  • Zhu PY, Zheng YL, Luo WB, et al. Experimental study on chloride diffusion in structural concrete considering the effect of damages induced by the cyclic impact loading. KSCE J Civ Eng. 2020;24(1):187–194.
  • Gontar WA, Martin JP, Popovics JS. Effects of cyclic loading on chloride permeability of plain concrete. In: Proceedings of Sessions of Engineering Mechanics 2000 - Condition Monitoring of Materials and Structures, Austin, TX, United States, Vol. 1; 2000. p. 95–109.
  • Song ZJ, Jiang LH, Li W, et al. Impact of compressive fatigue on chloride diffusion coefficient in OPC concrete: an analysis using EIS method. Constr Build Mater. 2016;113:712–720.
  • Pang S, Diao B, Ye YH, et al. Impact of cyclic loading on chloride diffusivity and mechanical performance of RC beams under seawater corrosion. Adv Mater Sci Eng. 2017;2017:1–15. ().
  • Ren JJ, Du W, Deng SJ, et al. Chloride ion transport in concrete of ballastless track under fatigue loading. J Southwest Jiaotong Univ. 2021;56(3):510–516.
  • Van Mien T, Stitmannaithum B, Nawa T. Prediction of chloride diffusion coefficient of concrete under flexural cyclic load. Comput Concrete. 2011;8(3):343–355.
  • Van Mien T, Stitmannaithum B, Nawa T. Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects. Comput Concrete. 2009;6(5):421–435.
  • Fu CQ, Ye HL, Jin XY, et al. Chloride penetration into concrete damaged by uniaxial tensile fatigue loading. Constr Build Mater. 2016;125:714–723.
  • Lee BJ, Hyun JH, Kim YY, et al. Chloride permeability of damaged high-performance fiber-reinforced cement composite by repeated compressive loads. Materials (Basel). 2014;7(8):5802–5815.
  • Jiang JY, Sun W, Wang J, et al. Resistance to chloride ion diffusion of structural concrete under bending fatigue load. J Southeast Univ Nat Sci Ed. 2010;40(2):362–366 (in Chinese).
  • Liu XL, Ren Y, Huang Q, et al. Chloride ion diffusion of structural concrete under the coupled effect of bending fatigue load and chloride. Mater Res Innov. 2015;19(Suppl. 1):181–184.
  • Yang Z, Gao Y, Mu S, et al. Improving the chloride binding capacity of cement paste by adding nano-Al2O3. Constr Build Mater. 2019;195:415–422.
  • Guo MH, Zhong QL, Zhou YW, et al. Influence of flexural loading and chloride exposure on the fatigue behavior of high-performance lightweight engineered cementitious composites. Constr Build Mater. 2020;249:118512.
  • Wang HC, Gong JX, Song YC. Experimental study on corrosion fatigue of RC beams. J Build Struct. 2004;25(05):105–110 + 123. (in Chinese).
  • Jiang LH, Liu H, Wang YL, et al. Influence of flexural fatigue on chloride threshold value for the corrosion of steels in Ca(OH)2 solutions. Mater Chem Phys. 2015;164:23–28.
  • Jiang LH, Liu H, Chu HQ, et al. Influence of compression fatigue on chloride threshold value for the corrosion of steels in simulated concrete pore. Constr Build Mater. 2014;73:699–704.
  • Jacobsen S, Sellevold EJ, Matala S. Frost durability of high strength concrete: effect of internal cracking on ice formation. Cem Concr Res. 1996;26(6):919–931.
  • Li WT, Sun W, Jiang JY. Damage of concrete experiencing flexural fatigue load and closed freeze/thaw cycles simultaneously. Constr Build Mater. 2011;25(5):2604–2610.
  • Boyd AJ, Leone A. Effect of freeze-thaw cycling on fatigue behaviour in concrete. IOP Conf Ser: Mater Sci Eng. 2019;652(1):012028.
  • Zheng YX, Yang L, Guo P, et al. Fatigue characteristics of prestressed concrete beam under freezing and thawing cycles. Adv Civ Eng. 2020;2020:8821132.
  • Qiao YF, Sun W, Jiang JY, et al. Coupling mechanism of saturated concrete subjected to simultaneous fatigue loading and freeze-thaw cycles. J Wuhan Univ Technol-Mat Sci Edit. 2018;33(5):1121–1128.
  • Gong FY, Ueda T, Wang Y, et al. Mesoscale simulation of fatigue behavior of concrete materials damaged by freeze-thaw cycles. Constr Build Mater. 2017;144:702–716.
  • Hasan M, Ueda T, Sato Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading. J Mater Civ Eng. 2008;20(1):37–45.
  • Xiao QH. Analysis of fatigue and cumulative damage characteristics for concrete in freezing-thawing environment. In: 11th International Conference on Fracture and Damage Mechanics, Xi'an, China, Vol. 525–526; 2012. p. 153–156.
  • Hong JX, Miao CW, Huang W, et al. Influence of freeze-thaw damage on the fatigue life of concrete. China Civil Eng J. 2012;45(6):83–89.
  • Qiao YF, Sun W, Jiang JY. Damage process of concrete subjected to coupling fatigue load and freeze/thaw cycles. Constr Build Mater. 2015;93:806–811.
  • Koda Y, Minakawa S, Iwaki I. Influence of environmental temperature and moisture conditions on fatigue resistance of concrete. J Struct Eng. 2015;61(A):759–766 (in Japanese).
  • Wang Z, Gong FY, Ueda T. Modeling and simulation on static and fatigue behaviors of intact and frost damaged concrete with ice-strengthening effects. J Adv Concr Technol. 2021;19(4):346–358.
  • Yang JX, Zhang TM, Sun QS. Experimental study on flexural fatigue properties of reinforced concrete beams after salt freezing. Adv Mater Sci Eng. 2020;2020:1032317.
  • Lei B, Li WG, Luo ZY, et al. Performance deterioration of sustainable recycled aggregate concrete under combined cyclic loading and environmental actions. J Sustain Cem Based Mater. 2021;10(1):23–45.
  • Wang H, Gao XJ, Liu JZ. Coupling effect of salt freeze-thaw cycles and cyclic loading on performance degradation of carbon nanofiber mortar. Cold Reg Sci Technol. 2018;154:95–102.
  • Byung Hwan O. Fatigue life distributions of concrete for various stress levels. Aci Mater J. 1991;88(2):122–128.
  • Mohammadi Y, Kaushik S. Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels. J Mater Civ Eng. 2005;17(6):650–658.
  • Chen B, Wang J. Flexural fatigue life reliability of alkali-activated slag concrete freeze-thaw damage in cold areas. Adv Mater Sci Eng. 2021;2021:1257163.
  • Jang JG, Kim HK, Kim TS, et al. Improved flexural fatigue resistance of PVA fiber-reinforced concrete subjected to freezing and thawing cycles. Constr Build Mater. 2014;59:129–135.
  • Göringer J, Foglar M. Experimental and theoretical study of the performance of reinforced concrete specimen subjected to cyclic loading and aggressive environment. Adv Mater Res. 2014;891–892:494–499.
  • Wang WZ, Shen AQ, He ZM, et al. Mechanism and erosion resistance of internally cured concrete including super absorbent polymers against coupled effects of acid rain and fatigue load. Constr Build Mater. 2021;290:123252.
  • Ghassemi P, Rajabi H, Toufigh V. Fatigue performance of polymer and ordinary cement concrete under corrosive conditions: a comparative study. Eng Fail Anal. 2020;111:104493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.