423
Views
1
CrossRef citations to date
0
Altmetric
Articles

Early-age reactivity of calcined kaolinitic clays in LC3 cements: a multitechnique investigation including pair distribution function analysis

, ORCID Icon, , & ORCID Icon

References

  • Amato I. Green cement: concrete solutions. Nature. 2013;494(7437):300–301.
  • Scrivener KL, John VM, Gartner EM. Eco-efficient cements: potential, economically viable solutions for a low-CO2, cement-based materials industry. Cem Concr Res. 2018;114:2–26.
  • CEMBUREAU: The European Cement Association. Available from: https://cembureau.eu/media/kuxd32gi/cembureau-2050-roadmap_final-version_web.pdf
  • Alujas A, Fernández R, Quintana R, et al. Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci. 2015;108:94–101.
  • Avet F, Snellings R, Alujas Diaz A, et al. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res. 2016;85:1–11.
  • Scrivener KL, Avet F, Maraghechi H, et al. Impacting factors and properties of limestone calcined clay cements (LC 3). Green Mater. 2019;7(1):3–14.
  • Jaskulski R, Jóźwiak-Niedźwiedzka D, Yakymechko Y. Calcined clay as supplementary cementitious material. Materials. 2020;13(21):4734.
  • Scrivener KL, Martirena F, Bishnoi S, et al. Calcined clay limestone cements (LC3). Cem Concr Res. 2018;114:49–56.
  • Sharma M, Bishnoi S, Martirena F, et al. Limestone calcined clay cement and concrete: a state-of-the-art review. Cem Concr Res. 2021;149:106564.
  • Zunino F, Scrivener KL. The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem Concr Res. 2021;140:106307.
  • Marangu JM. Effects of sulfuric acid attack on hydrated calcined clay–limestone cement mortars. J Sustain Cem Mater. 2020;10:257–271.
  • Vizcaíno-Andrés LM, Sánchez-Berriel S, Damas-Carrera S, et al. Industrial trial to produce a low clinker, low carbon cement. Mater Construcc. 2015;65(317):e045.
  • Sui H, Hou P, Liu Y, et al. Limestone calcined clay cement: mechanical properties, crystallography, and microstructure development. J Sustain Cem Mater. 2022;1–14, https://doi.org/10.1080/21650373.2022.2074911.
  • Alujas-Díaz A, Almenares-Reyes RS, Arcial-Carratalá FA, et al. The experience of Cuba TRC on the survey of kaolinitic clay deposits as source of SCMs—main outcomes and learned lessons. In: Bishnoi S, editor. Calcined Clays Sustain Concrete: Proceedings of the 3rd International Conference on Calcined Clays Sustain Concrete. New Delhi, India: Springer; 2020. p. 1–9.
  • Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;81(2):457–462.
  • Shvarzman A, Kovler K, Grader GS, et al. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res. 2003;33(3):405–416.
  • Fernandez R, Martirena F, Scrivener KL. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41(1):113–122.
  • Rong Z, Jiang G, Sun W. Effects of metakaolin on mechanical and microstructural properties of ultra-high performance cement-based composites. J Sustain Cem Mater. 2018;7(5):296–310.
  • Kapoor K, Singh SP, Singh B. Permeability of self-compacting concrete made with recycled concrete aggregates and metakaolin. J Sustain Cem Mater. 2017;6(5):293–313.
  • Taylor-Lange SC, Lamon EL, Riding KA, et al. Calcined kaolinite-bentonite clay blends as supplementary cementitious materials. Appl Clay Sci. 2015;108:84–93.
  • Danner T, Norden G, Justnes H. Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl Clay Sci. 2018;162:391–402.
  • Hanein T, Thienel K-C, Zunino F, et al. Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Mater Struct. 2021;55:1–29.
  • Hollanders S, Adriaens R, Skibsted J, et al. Pozzolanic reactivity of pure calcined clays. Appl Clay Sci. 2016;132–133:552–560.
  • Egami T, Billinge SJL. Underneath the bragg peaks: structural analysis of complex materials. 2nd ed. Pergamon: Elsevier Science; 2012.
  • White CE, Provis JL, Proffen T, et al. Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. J Phys Chem A. 2010;114(14):4988–4996.
  • Lee S, Xu H. Using complementary methods of synchrotron radiation powder diffraction and pair distribution function to refine crystal structures with high quality parameters—a review. Minerals. 2020;10(2):124.
  • Muraleedharan MG, Asgar H, Mohammed S, et al. Elucidating thermally induced structural and chemical transformations in kaolinite using reactive molecular dynamics simulations and X-ray scattering measurements. Chem Mater. 2020;32(2):651–662.
  • White CE, Provis JL, Proffen T, et al. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys. 2010;12(13):3239–3245.
  • White CE, Page K, Henson NJ, et al. In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl Clay Sci. 2013;73:17–25.
  • Si R, Guo S, Dai Q. Influence of calcium content on the atomic structure and phase formation of alkali-activated cement binder. J Am Ceram Soc. 2019;102(3):1479–1494.
  • Garg N, Skibsted J. Dissolution kinetics of calcined kaolinite and montmorillonite in alkaline conditions: evidence for reactive Al(V) sites. J Am Ceram Soc. 2019;102(12):7720–7734.
  • Skinner LB, Chae SR, Benmore CJ, et al. Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett. 2010;104(19):195502.
  • Morandeau AE, White CE. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium–silicate–hydrate gel. J Mater Chem A. 2015;3(16):8597–8605.
  • Cuesta A, Zea-Garcia JD, Londono-Zuluaga D, et al. Multiscale understanding of tricalcium silicate hydration reactions. Sci Rep. 2018;8(1):8544.
  • Cuesta A, Santacruz I, De la Torre AG, et al. Local structure and Ca/Si ratio in C-S-H gels from hydration of blends of tricalcium silicate and silica fume. Cem Concr Res. 2021;143:106405.
  • White CE, Daemen LL, Hartl M, et al. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements. Cem Concr Res. 2015;67:66–73.
  • Souza PSL, Dal Molin DCC. Viability of using calcined clays, from industrial by-products, as pozzolans of high reactivity. Cem Concr Res. 2005;35(10):1993–1998.
  • Maier M, Beuntner N, Thienel KC. Mineralogical characterization and reactivity test of common clays suitable as supplementary cementitious material. Appl Clay Sci. 2021;202:105990.
  • Ferreiro S, Canut MMC, Lund J, et al. Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements. Appl Clay Sci. 2019;169:81–90.
  • Teklay A, Yin C, Rosendahl L, et al. Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner. Appl Clay Sci. 2015;103:10–19.
  • Fabbri B, Gualtieri S, Leonardi C. Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Appl Clay Sci. 2013;73:2–10.
  • Shvarzman A, Kovler K, Schamban I, et al. Influence of chemical and phase composition of mineral admixtures on their pozzolanic activity. Adv Cem Res. 2002;14(1):35–41.
  • Tironi A, Trezza MA, Scian AN, et al. Potential use of argentine kaolinitic clays as pozzolanic material. Appl Clay Sci. 2014;101:468–476.
  • Kakali G, Perraki T, Tsivilis S, et al. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20(1–2):73–80.
  • Donatello S, Tyrer M, Cheeseman CR. Comparison of test methods to assess pozzolanic activity. Cem Concr Compos. 2010;32(2):121–127.
  • Ilić BR, Mitrović AA, Miličić LR. Thermal treatment of kaolin clay to obtain metakaolin. Hem Ind. 2010;64:351–356.
  • Bernal IMR, Shirani S, Cuesta A, et al. Phase and microstructure evolutions in LC3 binders by multi-technique approach including synchrotron microtomography. Constr Build Mater. 2021;300:124054.
  • De la Torre AG, Bruque S, Aranda MAG. Rietveld quantitative amorphous content analysis. J Appl Crystallogr. 2001;34(2):196–202.
  • Larson AC, Von Dreele RB. General structure analysis system (GSAS). Los Alamos Natl Lab Rep LAUR. 2004;748:86–748.
  • Fauth F, Peral I, Popescu C, et al. The new material science powder diffraction beamline at Alba synchrotron. Powder Diffr. 2013;28(S2):S360–S370.
  • Juhás P, Davis T, Farrow CL, et al. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J Appl Crystallogr. 2013;46(2):560–566.
  • Farrow CL, Juhas P, Liu JW, et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys Condens Matter. 2007;19(33):335219.
  • Jeong IK, Proffen T, Mohiuddin-Jacobs F, et al. Measuring correlated atomic motion using X-ray diffraction. J Phys Chem A. 1999;103(7):921–924.
  • Jeong IK, Heffner RH, Graf MJ, et al. Lattice dynamics and correlated atomic motion from the atomic pair distribution function. Phys Rev B - Condens Matter Mater Phys. 2003;67:104301.
  • Aparicio P, Galán E, Ferrell RE. A new kaolinite order index based on XRD profile fitting. Clay Miner. 2006;41(4):811–817.
  • Lothenbach B, Durdzinski P, De Weerdt K. Thermogravimetric analysis. In: Scrivener K, Snellings RBL, editors. A pract guid to microstruct anal cem mater. USA: CRC Press; 2016. p. 177–211.
  • Avet F, Scrivener KL. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3). Cem Concr Res. 2018;107:124–135.
  • Dollase WA. Correction of intensities of preferred orientation in powder diffractometry: application of the march model. J Appl Crystallogr. 1986;19(4):267–272.
  • Fitzgerald JJ, Hamza AI, Bronnimann CE, et al. Solid-state 27Al and 29Si NMR studies of the reactivity of the aluminum-containing clay mineral kaolinite. Solid State Ionics. 1989;32–33:378–388.
  • Rocha J, Klinowski J. 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite. Phys Chem Miner. 1990;17:179–186.
  • Ruiz-Santaquiteria C, Skibsted J. Identification of reactive sites in calcined kaolinite and montmorillonite from a combination of chemical methods and solid-state nmr spectroscopy. Calcined Clays Sustain Concrete: Proceedings of the 2nd International Conference on Calcined Clays Sustain Concrete. Netherlands: Springer; 2018. p. 404–408.
  • Zito SV, Irassar EF, Rahhal VF. Management of sanitary ware wastes as supplementary cementing materials in concretes. J Sustain Cem Mater. 2019;9:35–49.
  • Zito SV, Cordoba GP, Irassar EF, et al. Durability of eco-friendly blended cements incorporating ceramic waste from different sources. J Sustain Cem Mater. 2022, https://doi.org/10.1080/21650373.2021.2010242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.