175
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Preparation of ferric-rich sulfoaluminate cement from solid wastes and characterization of its mineral formation process

, , , &

References

  • Guo X, Zhang T. Effects of ultrasonically dispersed nano-slurries on solid waste-based autoclaved concrete (SWAC) and its leaching of heavy metals. J Sustain Cem Based Mater. 2022;11(3):149–163. doi: 10.1080/21650373.2021.1901790.
  • 2020 China eco-environmental statistical annual report. China: Ministry of Ecology and Environment of the People’s Republic of China; 2021.
  • Wang YM, Su M, Zhang L. Sulphoaluminate cement. Beijing: Beijing University of Technology Press; 1999.
  • Sabbah A, Zhutovsky S. Effect of sulfate content and synthesis conditions on phase composition of belite–ye’elimite–ferrite (BYF) clinker. Cem Concr Res. 2022;155:106745. doi: 10.1016/j.cemconres.2022.106745.
  • Koga GY, Albert B, Nogueira RP. On the hydration of belite–ye’elimite–ferrite (BYF) cement pastes: effect of the water-to-cement ratio and presence of fly ash. Cem Concr Res. 2020;137:106215. doi: 10.1016/j.cemconres.2020.106215.
  • Zhi X, An X. Low carbon technology roadmap of China cement industry. J Sustain Cem Based Mater. 2023;12(6):771–774. doi: 10.1080/21650373.2023.2188274.
  • Huang G, Gupta R, Liu WV. Effects of sodium gluconate on hydration reaction, setting, workability, and strength development of calcium sulfoaluminate belite cement mixtures. J Sustain Cem Based Mater. 2022;11(5):273–285. doi: 10.1080/21650373.2021.1936269.
  • Gastaldi D, Bertola F, Irico S, et al. Hydration behavior of cements with reduced clinker factor in mixture with sulfoaluminate binder. Cem Concr Res. 2021;139:106261. doi: 10.1016/j.cemconres.2020.106261.
  • Scrivener KL, John VM, Gartner EM. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015.
  • Ma J, Wang H, Yu Z, et al. A systematic review on durability of calcium sulphoaluminate cement-based materials in chloride environment. J Sustain Cem Based Mater. 2023;12(6):687–698. doi: 10.1080/21650373.2022.2113569.
  • Ren C, Wang W, Li G. Preparation of high-performance cementitious materials from industrial solid waste. Constr Build Mater. 2017;152:39–47. doi: 10.1016/j.conbuildmat.2017.06.124.
  • Wu S, Yao X, Ren C, et al. Recycling phosphogypsum as a sole calcium oxide source in calcium sulfoaluminate cement and its environmental effects. J Environ Manage. 2020;271:110986. doi: 10.1016/j.jenvman.2020.110986.
  • Wu S, Wang W, Ren C, et al. Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source. Constr Build Mater. 2019;228:116676. doi: 10.1016/j.conbuildmat.2019.116676.
  • Iacobescu RI, Pontikes Y, Koumpouri D, et al. Synthesis, characterization and properties of calcium ferroaluminate belite cements produced with electric arc furnace steel slag as raw material. Cem Concr Compos. 2013;44:1–8. doi: 10.1016/j.cemconcomp.2013.08.002.
  • Isteri V, Ohenoja K, Hanein T, et al. Production and properties of ferrite-rich CSAB cement from metallurgical industry residues. Sci Total Environ. 2020;712:136208. doi: 10.1016/j.scitotenv.2019.136208.
  • Hertel T, Van den Bulck A, Onisei S, et al. Boosting the use of bauxite residue (red mud) in cement – production of an Fe-rich calciumsulfoaluminate-ferrite clinker and characterisation of the hydration. Cem Concr Res. 2021;145:106463. doi: 10.1016/j.cemconres.2021.106463.
  • Cuberos AJ, De la Torre AG, Alvarez-Pinazo G, et al. Active iron-rich belite sulfoaluminate cements: clinkering and hydration. Environ Sci Technol. 2010;44(17):6855–6862. doi: 10.1021/es101785n.
  • Duvallet T, Zhou Y, Henke KR, et al. Effects of ferrite concentration on synthesis, hydration and mechanical properties of alite-calcium sulfoaluminate-ferrite cements. J Sustain Cem Based Mater. 2017;6(2):85–110. doi: 10.1080/21650373.2015.1077753.
  • Li J, Ma B, Zhou C-y, et al. Study on mechanism of chemical activation for minerals of high belite-calcium sulfoaluminate clinker. J Sustain Cem Based Mater. 2014;3(1):13–23. doi: 10.1080/21650373.2013.843476.
  • Chaunsali P, Mondal P. Hydration and early-age expansion of calcium sulfoaluminate cement-based binders: experiments and thermodynamic modeling. J Sustain Cem Based Mater. 2016;5(4):259–267. doi: 10.1080/21650373.2015.1060184.
  • Cuesta A, De la Torre ÁG, Losilla ER, et al. Pseudocubic crystal structure and phase transition in doped ye’elimite. Crystal Growth Des. 2014;14(10):5158–5163. doi: 10.1021/cg501290q.
  • Koumpouri D, Karatasios I, Psycharis V, et al. Effect of clinkering conditions on phase evolution and microstructure of belite calcium-sulpho-aluminate cement clinker. Cem Concr Res. 2021;147:106529. doi: 10.1016/j.cemconres.2021.106529.
  • Ben Haha M, Winnefeld F, Pisch A. Advances in understanding ye’elimite-rich cements. Cem Concr Res. 2019;123:105778. doi: 10.1016/j.cemconres.2019.105778.
  • Isteri V, Ohenoja K, Hanein T, et al. Ferritic calcium sulfoaluminate belite cement from metallurgical industry residues and phosphogypsum: clinker production, scale-up, and microstructural characterisation. Cem Concr Res. 2022;154:106715. doi: 10.1016/j.cemconres.2022.106715.
  • Yao X, Yang S, Dong H, et al. Effect of CaO content in raw material on the mineral composition of ferric-rich sulfoaluminate clinker. Constr Build Mater. 2020;263:120431. doi: 10.1016/j.conbuildmat.2020.120431.
  • Yao X, Wang W, Liu M, et al. Synergistic use of industrial solid waste mixtures to prepare ready-to-use lightweight porous concrete. J Clean Prod. 2019;211:1034–1043. doi: 10.1016/j.jclepro.2018.11.252.
  • Yao X, Yang S, Huang Y, et al. Effect of CaSO4 batching in raw material on the iron-bearing mineral transition of ferric-rich sulfoaluminate cement. Constr Build Mater. 2020;250:118783. doi: 10.1016/j.conbuildmat.2020.118783.
  • Huo J-h, Yu B-S, Peng Z-G, et al. Thermal control effects and mechanism of slag and fly ash on heat development of cement slurry used in hydrate formation. J Nat Gas Sci Eng. 2021;91:103967. doi: 10.1016/j.jngse.2021.103967.
  • Chen Z, Zhang S, Lin X, et al. Decomposition and reformation pathways of PCDD/Fs during thermal treatment of municipal solid waste incineration fly ash. J Hazard Mater. 2020;394:122526. doi: 10.1016/j.jhazmat.2020.122526.
  • Paulik F, Paulik J, Arnold M. Thermal decomposition of gypsum. Thermochim Acta. 1992;200:195–204. doi: 10.1016/0040-6031(92)85115-C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.