238
Views
0
CrossRef citations to date
0
Altmetric
Reports

Assessment of the durability and environmental impact of seawater-activated portlandite-calcined clay binder

, , &

References

  • Dixit A, Du H, Pang SD. Performance of mortar incorporating calcined marine clays with varying kaolinite content. J Clean Prod. 2021;282:124513. doi: 10.1016/j.jclepro.2020.124513.
  • Birol F. Cement technology roadmap plots path to cutting CO2 emissions 24% by 2050, International Energy Agency (IEA), 2018. Last retrieved from https://www.iea.org/news/cement-technologyroadmap-plots-path-to-cutting-co2-emissions-24-by-2050 on August 5, 2023.
  • Liu J, An R, Jin H, et al. Effects of w/b ratio, fly ash, limestone calcined clay, seawater and sea-sand on workability, mechanical properties, drying shrinkage behavior and micro-structural characteristics of concrete. Constr Build Mater. 2022;321:126333. doi: 10.1016/j.conbuildmat.2022.126333.
  • Ren J, Zhang L, Walkley B, et al. Degradation resistance of different cementitious materials to phosphoric acid attack at early stage. Cem Concr Res. 2022;151:106606. doi: 10.1016/j.cemconres.2021.106606.
  • Ren J, Zhang L, San Nicolas R. Degradation process of alkali-activated slag/fly ash and Portland cement-based pastes exposed to phosphoric acid. Constr Build Mater. 2020;232:117209. doi: 10.1016/j.conbuildmat.2019.117209.
  • Santhanam M, Cohen M, Olek J. Differentiating seawater and groundwater sulfate attack in Portland cement mortars. Cem Concr Res. 2006;36(12):2132–2137. doi: 10.1016/j.cemconres.2006.09.011.
  • Lee K, Jepson W. Environmental impact of desalination: a systematic review of life cycle assessment. Desalination. 2021;509:115066. doi: 10.1016/j.desal.2021.115066.
  • Ren J, Sun H, Li Q, et al. A comparison between alkali-activated slag/fly ash binders prepared with natural seawater and deionized water. J Am Ceram Soc. 2022;105(9):5929–5943. doi: 10.1111/jace.18515.
  • Miller SA, Horvath A, Monteiro PJM. Impacts of booming concrete production on water resources worldwide. Nat Sustain. 2018;1(1):69–76. doi: 10.1038/s41893-017-0009-5.
  • Saleh S, Li Y-L, Hamed E, et al. Workability, strength, and shrinkage of ultra-high-performance seawater, sea sand concrete with different OPC replacement ratios. J Sustain Cement Based Mater. 2023;12(3):271–291. doi: 10.1080/21650373.2022.2050831.
  • MacFarlane J, Vanorio T, Monteiro PJM. Multi-scale imaging, strength and permeability measurements: understanding the durability of roman marine concrete. Constr Build Mater. 2021;272:121812. doi: 10.1016/j.conbuildmat.2020.121812.
  • Jackson MD, Landis EN, Brune PF, et al. Mechanical resilience and cementitious processes in imperial roman architectural mortar. Proc Natl Acad Sci U S A. 2014;111(52):18484–18489. doi: 10.1073/pnas.1417456111.
  • Xu K, Tremsin AS, Li J, et al. Microstructure and water absorption of ancient concrete from Pompeii: an integrated synchrotron microtomography and neutron radiography characterization. Cem Concr Res. 2021;139:106282. doi: 10.1016/j.cemconres.2020.106282.
  • Yu L, Zhou S, Deng W. Pozzolanic activity of volcanic rocks from Southern Jiangxi province, China. J Sustain Cement Based Mater. 2016;5(3):176–198. doi: 10.1080/21650373.2015.1010660.
  • Yi Y, Zhu D, Guo S, et al. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cem Concr Compos. 2020;113:103695. doi: 10.1016/j.cemconcomp.2020.103695.
  • Palomo A, Monteiro P, Martauz P, et al. Hybrid binders: a journey from the past to a sustainable future (Opus caementicium futurum). Cem Concr Res. 2019;124:105829. doi: 10.1016/j.cemconres.2019.105829.
  • Gotti E, Oleson JP, Bottalico L, et al. A comparison of the chemical and engineering characteristics of ancient roman hydraulic concrete with a modern reproduction of vitruvian hydraulic concrete. Archaeometry. 2008;50(4):576–590. doi: 10.1111/j.1475-4754.2007.00371.x.
  • Oleson JP, Bottalico L, Brandon C, et al. Reproducing a roman Maritime structure with Vitruvian pozzolanic concrete. J. Roman Archaeol. 2006;19:29–52. doi: 10.1017/S1047759400006255.
  • Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cem Concr Res. 2011;41(12):1244–1256. doi: 10.1016/j.cemconres.2010.12.001.
  • Ashraf W, Borno IB, Khan RI, et al. Mimicking the cementation mechanism of ancient roman seawater concrete using calcined clays. Appl Clay Sci. 2022;230:106696. doi: 10.1016/j.clay.2022.106696.
  • Ghosh P, Ganesan R. Effect of w/c ratio on fresh electrical resistivity of various pumice based HPC and computation of setting time. Mater Struct. 2022;55(3):1–12. doi: 10.1617/s11527-022-01939-3.
  • Liu J, Liu J, Fan X, et al. Experimental analysis on water penetration resistance and micro properties of concrete: effect of supplementary cementitious materials, seawater, sea-sand and water-binder ratio. J Build Eng. 2022;50:104153. doi: 10.1016/j.jobe.2022.104153.
  • Zhang W, Zheng C, Li Z, et al. Investigation on mechanical properties improvement of seawater engineered cementitious composites (ECC) using FA/LC 2. Constr Build Mater. 2022;345:128271. doi: 10.1016/j.conbuildmat.2022.128271.
  • Zolfagharnasab A, Ramezanianpour AA, Bahman-Zadeh F. Investigating the potential of low-grade calcined clays to produce durable LC3 binders against chloride ions attack. Constr Build Mater. 2021;303:124541. doi: 10.1016/j.conbuildmat.2021.124541.
  • Cordoba G, Sposito R, Köberl M, et al. Chloride migration and long-term natural carbonation on concretes with calcined clays: a study of calcined clays in Argentina. Case Stud Constr Mater. 2022;17:e01190. doi: 10.1016/j.cscm.2022.e01190.
  • Chen Y, Zhang Y, He S, et al. Rheology control of limestone calcined clay cement pastes by modifying the content of fine-grained metakaolin. J Sustain Cement Based Mater. 2023;0:1–15. doi: 10.1080/21650373.2023.2169965.
  • Moodi F, Ramezanianpour AA, Safavizadeh AS. Evaluation of the optimal process of thermal activation of kaolins. Scientia Iranica. 2011;18(4):906–912. doi: 10.1016/j.scient.2011.07.011.
  • Taylor-Lange SC, Lamon EL, Riding KA, et al. Calcined kaolinite-bentonite clay blends as supplementary cementitious materials. Appl Clay Sci. 2015;108:84–93. doi: 10.1016/j.clay.2015.01.025.
  • Luo S, Zhao M, Jiang Z, et al. Microwave preparation and carbonation properties of low-carbon cement. Constr Build Mater. 2022;320:126239. doi: 10.1016/j.conbuildmat.2021.126239.
  • Puligilla S, Mondal P. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cem Concr Res. 2015;70:39–49. doi: 10.1016/j.cemconres.2015.01.006.
  • Chen X, Kim E, Suraneni P, Struble L. Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers. Materials. 2020;13(24):5784. doi: 10.3390/ma13245784
  • ASTM standard ASTM E1621-22. Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry; 2022.
  • ASTM standard C1218/C1218M-20. Standard Test Method for Water-Soluble Chloride in Mortar and Concrete. ASTM International; 2020.
  • ASTM standard C114-18. Standard Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International; 2018.
  • Arya C, Buenfeld NR, Newman JB. Assessment of simple methods of determining the free chloride. Cem Concr Res. 1987;17(6):907–918. doi: 10.1016/0008-8846(87)90079-2.
  • He F, Wang R, Shi C, et al. Effect of bound chloride on extraction of water soluble chloride in cement-based materials exposed to a chloride salt solution. Constr Build Mater. 2018;160:223–232. doi: 10.1016/j.conbuildmat.2017.11.051.
  • Proverbio E, Carassiti F. Evaluation of chloride content in concrete by X-ray fluorescence. Cem Concr Res. 1997;27(8):1213–1223. doi: 10.1016/S0008-8846(97)00108-7.
  • ASTM standard C157-17. Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM International; 2017.
  • Habert G. Assessing the environmental impact of conventional and ‘green’ cement production, 10 Eco-efficient Construction and Building Materials. 2014:199–238. doi: 10.1533/9780857097729.2.199
  • Pradhan S, Chang Boon Poh A, Qian S. Impact of service life and system boundaries on life cycle assessment of sustainable concrete mixes. J Clean Prod. 2022;342:130847. doi: 10.1016/j.jclepro.2022.130847.
  • Braga AM, Silvestre JD, de Brito J. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. J Clean Prod. 2017;162:529–543. doi: 10.1016/j.jclepro.2017.06.057.
  • Demirel S, Öz HÖ, Güneş M, et al. Life-cycle assessment (LCA) aspects and strength characteristics of self-compacting mortars (SCMs) incorporating fly ash and waste glass PET. Int J Life Cycle Assess. 2019;24(6):1139–1153. doi: 10.1007/s11367-018-1562-5.
  • Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI). 2013. Available from: https://www.epa.gov/chemical-research/tool-reduction-and-assessmentchemicals-and-other-environmental-impacts-traci
  • Sagastume Gutiérrez A, Cabello Eras JJ, Gaviria CA, et al. Improved selection of the functional unit in environmental impact assessment of cement. J Clean Prod. 2017;168:463–473. doi: 10.1016/j.jclepro.2017.09.007.
  • Damineli BL, Kemeid FM, Aguiar PS, et al. Measuring the eco-efficiency of cement use. Cem Concr Compos. 2010;32(8):555–562. doi: 10.1016/j.cemconcomp.2010.07.009.
  • Wernet G, Bauer C, Steubing B, et al. The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess. 2016;21(9):1218–1230. doi: 10.1007/s11367-016-1087-8.
  • Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI). 2014. Available from: https://www.epa.gov/chemical-research/tool-reduction-and-assessmentchemicals-and-other-environmental-impacts-traci
  • Al-Jabari M. Concrete durability problems: physicochemical and transport mechanisms. In Integral Waterproofing of Concrete Structures. 2022. pp. 69–107. Woodhead Publishing, Sawston, Cambridge, UK.
  • Yoon S, Moon J, Bae S, et al. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste. Mater Chem Phys. 2014;145(3):376–386. doi: 10.1016/j.matchemphys.2014.02.026.
  • Ye H. Self-assembly of corrosion inhibitors-intercalated layered double hydroxides (LDHs) in cementitious systems. Appl Clay Sci. 2022;216:106380. doi: 10.1016/j.clay.2021.106380.
  • Shi Z, Geiker MR, Lothenbach B, et al. Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cem Concr Compos. 2017;78:73–83. doi: 10.1016/j.cemconcomp.2017.01.002.
  • Wu Q, Xue Q, Yu Z. Research status of super sulfate cement. J Clean Prod. 2021;294:126228. doi: 10.1016/j.jclepro.2021.126228.
  • Aziz A, Bellil A, El Amrani El Hassani IE, et al. Geopolymers based on natural perlite and kaolinic clay from Morocco: synthesis, characterization, properties, and applications. Ceram Int. 2021;47(17):24683–24692. doi: 10.1016/j.ceramint.2021.05.190.
  • Wilson W, Gonthier JN, Georget F, et al. Insights on chemical and physical chloride binding in blended cement pastes. Cem Concr Res. 2022;156:106747. doi: 10.1016/j.cemconres.2022.106747.
  • Gameiro A, Santos Silva A, Veiga R, et al. Hydration products of lime-metakaolin pastes at ambient temperature with ageing. Thermochim Acta. 2012;535:36–41. doi: 10.1016/j.tca.2012.02.013.
  • Georget F, Bénier C, Wilson W, et al. Chloride sorption by C-S-H quantified by SEM-EDX image analysis. Cem Concr Res. 2022;152:106656. doi: 10.1016/j.cemconres.2021.106656.
  • Kapeluszna E, Kotwica Ł, Różycka A, et al. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr Build Mater. 2017;155:643–653. doi: 10.1016/j.conbuildmat.2017.08.091.
  • Sui S, Wilson W, Georget F, et al. Quantification methods for chloride binding in Portland cement and limestone systems. Cem Concr Res. 2019;125:105864. doi: 10.1016/j.cemconres.2019.105864.
  • Wei J, Gencturk B. Hydration of ternary Portland cement blends containing metakaolin and sodium bentonite. Cem Concr Res. 2019;123:105772. doi: 10.1016/j.cemconres.2019.05.017.
  • Deng H, He Z. Interactions of sodium chloride solution and calcium silicate hydrate with different calcium to silicon ratios: a molecular dynamics study. Constr Build Mater. 2021;268:121067. doi: 10.1016/j.conbuildmat.2020.121067.
  • Longhi MA, Walkley B, Rodríguez ED, et al. New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers. Compos B Eng. 2019;176:107172. doi: 10.1016/j.compositesb.2019.107172.
  • Guerrero A, Goñi S, Allegro VR. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions. J Hazard Mater. 2009;165(1-3):903–908. doi: 10.1016/j.jhazmat.2008.10.073.
  • Bianco I, Ap Dafydd Tomos B, Vinai R. Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator – a LCA study. J Clean Prod. 2021;316:128383. doi: 10.1016/j.jclepro.2021.128383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.