149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Towards enhancing the durability of seawater coral aggregate concrete under drying-wetting cycles with slag-based geopolymers

, , &

References

  • Zhou W, Feng P, Yang JQ. Advances in coral aggregate concrete and its combination with FRP: a state-of-the-art review. Adv Struct Eng. 2021;24(6):1161–1181. doi: 10.1177/1369433220968429.
  • Yin SP, Hu CS, Liang XZ. Bonding properties of different kinds of FRP bars and steel bars with all-coral aggregate seawater concrete. J Mater Civ Eng. 2020;32(10):04020282. doi: 10.1061/(ASCE)MT.1943-5533.0003378.
  • Huang D, Niu D, Zheng H, et al. Study on chloride transport performance of eco-friendly coral aggregate concrete in marine environment. Constr Build Mater. 2020;258:120272. doi: 10.1016/j.conbuildmat.2020.120272.
  • Wang G, Wu Q, Zhou H, et al. Diffusion of chloride ion in coral aggregate seawater concrete under marine environment. Constr Build Mater. 2021;284:122821. doi: 10.1016/j.conbuildmat.2021.122821.
  • Zhang J, Wu Z, Zhang Y, et al. Mesoscopic characteristics and macroscopic mechanical properties of coral aggregates. Constr Build Mater. 2021;309:125125. doi: 10.1016/j.conbuildmat.2021.125125.
  • Zhang B, Zhu H, Wang Q, et al. Design and properties of seawater coral aggregate alkali-activated concrete. J Sustainable Cem Based Mater. 2022;11(3):187–201. doi: 10.1080/21650373.2021.1913659.
  • Liu J, Ou Z, Peng W, et al. Literature review of coral concrete. Arab J Sci Eng. 2018;43(4):1529–1541. doi: 10.1007/s13369-017-2705-x.
  • Xiao J, Qiang C, Nanni A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities. Constr Build Mater. 2017;155:1101–1111. doi: 10.1016/j.conbuildmat.2017.08.130.
  • Wang A, Huang M, Chu Y, et al. Optimization of mix proportion of basic magnesium sulfate cement-based high-strength coral concrete. Constr Build Mater. 2022;341:127709. doi: 10.1016/j.conbuildmat.2022.127709.
  • Zhou LL, Guo SC, Zhang ZH, et al. Mechanical behavior and durability of coral aggregate concrete and bonding performance with fiber-reinforced polymer (FRP) bars: a critical review. J Cleaner Prod. 2021;289:125652. doi: 10.1016/j.jclepro.2020.125652.
  • Wang L, Mao Y, Lv H, et al. Bond properties between FRP bars and coral concrete under seawater conditions at 30, 60, and 80 °C. Constr Build Mater. 2018;162:442–449. doi: 10.1016/j.conbuildmat.2017.12.058.
  • Shi J, Sun S, Cao X, et al. Pullout behaviors of basalt fiber-reinforced polymer bars with mechanical anchorages for concrete structures exposed to seawater. Constr Build Mater. 2023;373:130866. doi: 10.1016/j.conbuildmat.2023.130866.
  • Wang A, Lyu B, Zhang Z, et al. The development of coral concretes and their upgrading technologies: a critical review. Constr Build Mater. 2018;187:1004–1019. doi: 10.1016/j.conbuildmat.2018.07.202.
  • Zhang B, Zhu H, Dong Z, et al. Mechanical properties and durability of FRP-reinforced coral aggregate concrete structures: a critical review. Mater Today Commun. 2023;35:105656. doi: 10.1016/j.mtcomm.2023.105656.
  • Zhang B, Wang W, Yang Z, et al. Understanding the bond performance between BFRP bars and alkali-activated seawater coral aggregate concrete under marine environments. Eng Struct. 2023;288:116228. doi: 10.1016/j.engstruct.2023.116228.
  • Yu H, Da B, Ma H, et al. Service life prediction of coral aggregate concrete structure under island reef environment. Constr Build Mater. 2020;246:118390. doi: 10.1016/j.conbuildmat.2020.118390.
  • Zhang B, Zhu H, Chen J. Bond durability between BFRP bars and seawater coral aggregate concrete under seawater corrosion environments. Constr Build Mater. 2023;379:131274. doi: 10.1016/j.conbuildmat.2023.131274.
  • Niu D, Su L, Luo Y, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Constr Build Mater. 2020;237:117628. doi: 10.1016/j.conbuildmat.2019.117628.
  • Wang Y, Zhang SH, Niu DT, et al. Strength and chloride ion distribution brought by aggregate of basalt fiber reinforced coral aggregate concrete. Constr Build Mater. 2020;234:117390. doi: 10.1016/j.conbuildmat.2019.117390.
  • Cheng SK, Shui ZH, Sun T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl Clay Sci. 2017;141:111–117. doi: 10.1016/j.clay.2017.02.026.
  • Wang Y, Zhang SH, Niu DT, et al. Effects of silica fume and blast furnace slag on the mechanical properties and chloride ion distribution of coral aggregate concrete. Constr Build Mater. 2019;214:648–658. doi: 10.1016/j.conbuildmat.2019.04.149.
  • Wu W, Wang R, Zhu C, et al. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete. Constr Build Mater. 2018;185:69–78. doi: 10.1016/j.conbuildmat.2018.06.097.
  • Liu B, Guo J, Zhou J, et al. The mechanical properties and microstructure of carbon fibers reinforced coral concrete. Constr Build Mater. 2020;249:118771. doi: 10.1016/j.conbuildmat.2020.118771.
  • Singh NB, Middendorf B. Geopolymers as an alternative to Portland cement: an overview. Constr Build Mater. 2020;237:117455. doi: 10.1016/j.conbuildmat.2019.117455.
  • Wang AG, Zheng Y, Zhang ZH, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review. Engineering. 2020;6(6):695–706. doi: 10.1016/j.eng.2019.08.019.
  • Ge Y, Tian X, Huang D, et al. Understanding efflorescence behavior and compressive strength evolution of metakaolin-based geopolymer under a pore structure perspective. J Build Eng. 2023;66:105828. doi: 10.1016/j.jobe.2023.105828.
  • El-Hassan H, Shehab E, Al-Sallamin A. Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete. J Sustainable Cem Based Mater. 2021;10(5):289–317. doi: 10.1080/21650373.2021.1883145.
  • Xu WY, Yang ST, Xu CJ, et al. Study on fracture properties of alkali-activated slag seawater coral aggregate concrete. Constr Build Mater. 2019;223:91–105. doi: 10.1016/j.conbuildmat.2019.06.191.
  • Provis JL. Alkali-activated materials. Cem Concr Res. 2018;114:40–48. doi: 10.1016/j.cemconres.2017.02.009.
  • Zhang B, Zhu H, Cheng YZ, et al. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: a critical review. Constr Build Mater. 2022;318:125993. doi: 10.1016/j.conbuildmat.2021.125993.
  • Liu T, Yu Q, Brouwers HJH, et al. Utilization of waste glass in alkali activated slag/fly ash blends: reaction process, microstructure, and chloride diffusion behavior. J Sustainable Cem Based Mater. 2023;12(5):516–526. doi: 10.1080/21650373.2022.2082577.
  • Zhang J, Shi C, Zhang Z, et al. Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr Build Mater. 2017;152:598–613. doi: 10.1016/j.conbuildmat.2017.07.027.
  • Du H, Pang SD. Value-added utilization of marine clay as cement replacement for sustainable concrete production. J Cleaner Prod. 2018;198:867–873. doi: 10.1016/j.jclepro.2018.07.068.
  • Huang D, Yuan Q, Chen P, et al. Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag. J Build Eng. 2022;62:105341. doi: 10.1016/j.jobe.2022.105341.
  • Amran M, Abdelgader HS, Onaizi AM, et al. 3D-printable alkali-activated concretes for building applications: a critical review. Constr Build Mater. 2022;319:126126. doi: 10.1016/j.conbuildmat.2021.126126.
  • Yang G, Zhao J, Wang Y. Durability properties of sustainable alkali-activated cementitious materials as marine engineering material: a review. Mater Today Sustainability. 2022;17:100099. doi: 10.1016/j.mtsust.2021.100099.
  • Du H, Tan KH. Concrete with recycled glass as fine aggregates. ACI Mater J. 2013;111:47–58. doi: 10.14359/51686446.
  • Das SK, Mishra J, Mustakim SM, et al. Sustainable utilization of ultrafine rice husk ash in alkali activated concrete: characterization and performance evaluation. J Sustainable Cem Based Mater. 2022;11(2):100–112. doi: 10.1080/21650373.2021.1894265.
  • Zhang B, Zhu H, Cao RM. Mechanical properties and drying shrinkage of alkali-activated seawater coral aggregate concrete. J Sustainable Cem Based Mater. 2022;11(6):408–417. doi: 10.1080/21650373.2021.1989633.
  • Zhang B, Cheng Y, Zhu H. Bond performance between BFRP bars and alkali-activated seawater coral aggregate concrete. Eng Struct. 2023;279:115596. doi: 10.1016/j.engstruct.2023.115596.
  • Zhang B, Zhu H, Shah KW, et al. Performance evaluation and microstructure characterization of seawater and coral/sea sand alkali-activated mortars. Constr Build Mater. 2020;259:120403. doi: 10.1016/j.conbuildmat.2020.120403.
  • Zhang B, Zhu H, Li FZ, et al. Compressive stress-strain behavior of seawater coral aggregate concrete incorporating eco-efficient alkali-activated slag materials. Constr Build Mater. 2021;299:123886. doi: 10.1016/j.conbuildmat.2021.123886.
  • Zhang B, Zhu H. Durability of seawater coral aggregate concrete under seawater immersion and dry-wet cycles. J Build Eng. 2023;66:105894. doi: 10.1016/j.jobe.2023.105894.
  • Özcan A, Karakoç MB. Evaluation of sulfate and salt resistance of ferrochrome slag and blast furnace slag‐based geopolymer concretes. Struct Concr. 2019;20(5):1607–1621. doi: 10.1002/suco.201900061.
  • Fu Q, Xu W, Zhao X, et al. The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int. 2021;47(21):29550–29566. doi: 10.1016/j.ceramint.2021.07.190.
  • Cao Y, Bao J, Zhang P, et al. A state-of-the-art review on the durability of seawater coral aggregate concrete exposed to marine environment. J Build Eng. 2022;60:105199. doi: 10.1016/j.jobe.2022.105199.
  • Ye H, Fu C, Yang G. Influence of dolomite on the properties and microstructure of alkali-activated slag with and without pulverized fly ash. Cem Concr Compos. 2019;103:224–232. doi: 10.1016/j.cemconcomp.2019.05.011.
  • Li W, Shumuye ED, Shiying T, et al. Eco-friendly fibre reinforced geopolymer concrete: a critical review on the microstructure and long-term durability properties. Case Stud Constr Mater. 2022;16:e00894. doi: 10.1016/j.cscm.2022.e00894.
  • Tian L, He D, Zhao J, et al. Durability of geopolymers and geopolymer concretes: a review. Rev Adv Mater Sci. 2021;60:1–14. doi: 10.1515/rams-2021-0002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.