89
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of performance and healing effect of two-component biological self-healing mortar

, , , , &

References

  • Su H, Zhang H, Qi G, et al. Preparation and CO2 adsorption properties of TEPA-functionalized multi-level porous particles based on solid waste. Colloids Surf, A. 2022;653:130004. doi: 10.1016/j.colsurfa.2022.130004.
  • Qian C, Yu X, Zheng T, et al. Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials. J CO2 Util. 2022;55:101849. doi: 10.1016/j.jcou.2021.101849.
  • Yu X, Zhang Q. Microbially/CO2-derived CaCO3 cement and its microstructural and mechanical performance. J Sustainable Cem-Based Mater. 2023;12(9):1156–1168. doi: 10.1080/21650373.2023.2178539.
  • Monteiro PJM, Miller SA, Horvath A. Towards sustainable concrete. Nat Mater. 2017;16(7):698–699. Epub 2017/06/28. doi: 10.1038/nmat4930.
  • Chen W, Huo Z, Yang Z. Study on the performance of green cement with large amount of steel slag addition. IOP Conf Ser: Earth Environ Sci. 2019;233:022015. doi: 10.1088/1755-1315/233/2/022015.
  • Su Y, Jin P, Zhan Q. Improvement in mechanical properties and microstructure of electric arc furnace slag bricks by microbial accelerated carbonation. J Sustainable Cem-Based Mater. 2023;12(8):1033–1047. doi: 10.1080/21650373.2022.2153283.
  • De la Varga I, Castro J, Bentz DP, et al. Evaluating the hydration of high volume fly ash mixtures using chemically inert fillers. Constr Build Mater. 2018;161:221–228. doi: 10.1016/j.conbuildmat.2017.11.132.
  • Sharma B, Singh A, Joshi S, et al. Utilization of sandstone waste in cement mortar for sustainable production of building materials through biomineralization. J Sustainable Cem-Based Mater. 2023;12(6):712–720. doi: 10.1080/21650373.2022.2116500.
  • Siddique R. Utilization of silica fume in concrete: review of hardened properties. Resour Conserv Recycl. 2011;55(11):923–932. doi: 10.1016/j.resconrec.2011.06.012.
  • Alberti MG, Enfedaque A, Gálvez JC. On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Constr Build Mater. 2014;55:274–288. doi: 10.1016/j.conbuildmat.2014.01.024.
  • Liu T, Qin S, Zou D, et al. Experimental investigation on the durability performances of concrete using cathode ray tube glass as fine aggregate under chloride ion penetration or sulfate attack. Constr Build Mater. 2018;163:634–642. doi: 10.1016/j.conbuildmat.2017.12.135.
  • Higashiyama H, Yagishita F, Sano M, et al. Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr Build Mater. 2012;26(1):96–101. doi: 10.1016/j.conbuildmat.2011.05.008.
  • Xu H, Lian J, Gao M, et al. Self-Healing concrete using rubber particles to immobilize bacterial spores. Materials (Basel). 2019;12(14):2313. doi: 10.3390/ma12142313.
  • Huang H, Ye G, Qian C, et al. Self-healing in cementitious materials: materials, methods and service conditions. Mater Des. 2016;92:499–511. doi: 10.1016/j.matdes.2015.12.091.
  • Abro FUR, Buller AS, Lee KM, et al. Using the Steady-State chloride migration test to evaluate the Self-Healing capacity of cracked mortars containing crystalline, expansive, and swelling admixtures. Materials (Basel). 2019;12(11):1865. Epub 2019/06/12. doi: 10.3390/ma12111865.
  • De Grave L, Tenório Filho JR, Snoeck D, et al. Poly(aspartic acid) superabsorbent polymers as biobased and biodegradable additives for self-sealing of cementitious mortar. J Sustainable Cem-Based Mater. 2023;12(8):925–940. doi: 10.1080/21650373.2022.2137861.
  • Yu X, Rong H. Seawater based MICP cements two/one-phase cemented sand blocks. Appl Ocean Res. 2022;118:102972. doi: 10.1016/j.apor.2021.102972.
  • Yu X, Yang H, Wang H. A cleaner biocementation method of soil via microbially induced struvite precipitation: a experimental and numerical analysis. J Environ Manage. 2022;316:115280. Epub 2022/05/20. doi: 10.1016/j.jenvman.2022.115280.
  • Mors RM, Jonkers HM. Towards a bacteria-based agent to make concrete self-healing. MRS Proc. 2012;1488:75-80. doi: 10.1557/opl.2012.1543.
  • Feng J, Chen B, Sun W, et al. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr Build Mater. 2021;280:122460. doi: 10.1016/j.conbuildmat.2021.122460.
  • Kim H, Son HM, Seo J, et al. Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: a review. Constr Build Mater. 2021;274:122094. doi: 10.1016/j.conbuildmat.2020.122094.
  • Jonkers HM, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng. 2010;36(2):230–235. doi: 10.1016/j.ecoleng.2008.12.036.
  • Su Y, Zheng T, Qian C. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete. Constr Build Mater. 2021;273:121740. doi: 10.1016/j.conbuildmat.2020.121740.
  • Han S, Choi EK, Park W, et al. Effectiveness of expanded clay as a bacteria carrier for self-healing concrete. Appl Biol Chem. 2019;62:19.doi: 10.1186/s13765-019-0426-4.
  • Jiang L, Jia G, Jiang C, et al. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Constr Build Mater. 2020;232:117222. doi: 10.1016/j.conbuildmat.2019.117222.
  • Wang JY, Belie ND, Verstraete W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol. 2012;39(4):567–577. Epub 2011/09/20. doi: 10.1007/s10295-011-1037-1.
  • Huynh NNT, Phuong NM, Toan NPA, et al. Bacillus Subtilis HU58 immobilized in micropores of diatomite for using in self-healing concrete. Proc Eng. 2017;171:598–605. doi: 10.1016/j.proeng.2017.01.385.
  • Zhang J, Liu Y, Feng T, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr Build Mater. 2017;148:610–617. doi: 10.1016/j.conbuildmat.2017.05.021.
  • Xu J, Wang X, Zuo J, et al. Self-Healing of concrete cracks by ceramsite-loaded microorganisms. Adv Mater Sci Eng. 2018;2018:1–8. doi: 10.1155/2018/5153041.
  • Gupta S, Kua HW, Pang SD. Healing cement mortar by immobilization of bacteria in biochar: an integrated approach of self-healing and carbon sequestration. Cem Concr Compos. 2018;86:238–254. doi: 10.1016/j.cemconcomp.2017.11.015.
  • Wang J, Van Tittelboom K, De Belie N, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater. 2012;26(1):532–540. doi: 10.1016/j.conbuildmat.2011.06.054.
  • Wang J, Mignon A, Snoeck D, et al. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol. 2015;6:1088. Epub 2015/11/04. doi: 10.3389/fmicb.2015.01088.
  • Wang JY, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res. 2014;56:139–152. doi: 10.1016/j.cemconres.2013.11.009.
  • Wu M, Hu X, Zhang Q, et al. Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks. Cem Concr Compos. 2020;113:103718. doi: 10.1016/j.cemconcomp.2020.103718.
  • Huang X, Liu C, Gao C, et al. Comparison of nutrient removal and bacterial communities between natural zeolite-based and volcanic rock-based vertical flow constructed wetlands treating piggery wastewater. Desalin Water Treat. 2013;51(22–24):4379–4389. doi: 10.1080/19443994.2012.747422.
  • Dong Y, Lin H, Zhang X. Simultaneous ammonia nitrogen and phosphorus removal from Micro-Polluted water by biological aerated filters with different media. Water Air Soil Pollut. 2020;231:234. doi: 10.1007/s11270-020-04616-9.
  • Fu LY, Wu CY, Zhou YX, et al. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF). Water Sci Technol. 2016;73(8):2031–2038. Epub 2016/04/28. doi: 10.2166/wst.2016.049.
  • Kocyigit F, Bayram M, Hekimoglu G, et al. Thermal energy saving and physico-mechanical properties of foam concrete incorporating form-stabilized basalt powder/capric acid based composite phase change material. J Cleaner Prod. 2023;414:137617. doi: 10.1016/j.jclepro.2023.137617.
  • Chen H, Qian C, Huang H. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr Build Mater. 2016;126:297–303. doi: 10.1016/j.conbuildmat.2016.09.023.
  • Zheng T, Su Y, Qian C, et al. Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials. Biochem Eng J. 2020;163:107756. doi: 10.1016/j.bej.2020.107756.
  • Wu M, Hu X, Zhang Q, et al. Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Constr Build Mater. 2019;209:631–643. doi: 10.1016/j.conbuildmat.2019.03.181.
  • Yuan H, Zhang Q, Hu X, et al. Application of zeolite as a bacterial carrier in the self-healing of cement mortar cracks. Constr Build Mater. 2022;331:127324. doi: 10.1016/j.conbuildmat.2022.127324.
  • Chetty K, Garbe U, Wang Z, et al. Bioconcrete based on sulfate-reducing bacteria granules: cultivation, mechanical properties, and self-healing performance. J Sustainable Cem-Based Mater. 2023;12(9):1049–1060. doi: 10.1080/21650373.2022.2153389.
  • Sidhu N, Goyal S, Reddy MS. Self-healing by biocomposite containing metakaolin immobilized bacterial spores in concrete using low-cost corn steep liquor media. J Sustainable Cem-Based Mater. 2023;12(11):1430–1446. doi: 10.1080/21650373.2023.2224805.
  • Luo M, Qian C-X, Li R-y Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Constr Build Mater. 2015;87:1–7. doi: 10.1016/j.conbuildmat.2015.03.117.
  • Xu J, Tang Y, Wang X, et al. Application of ureolysis-based microbial CaCO3 precipitation in self-healing of concrete and inhibition of reinforcement corrosion. Constr Build Mater. 2020;265:120364. doi: 10.1016/j.conbuildmat.2020.120364.
  • Xu J, Tang Y, Wang X. A correlation study on optimum conditions of microbial precipitation and prerequisites for self-healing concrete. Process Biochem. 2020;94:266–272. doi: 10.1016/j.procbio.2020.04.028.
  • Wang X, Xu J, Wang Z, et al. Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity. Constr Build Mater. 2022;337:127581. doi: 10.1016/j.conbuildmat.2022.127581.
  • Basaran Bundur Z, Kirisits MJ, Ferron RD. Biomineralized cement-based materials: impact of inoculating vegetative bacterial cells on hydration and strength. Cem Concr Res. 2015;67:237–245. doi: 10.1016/j.cemconres.2014.10.002.
  • Nagar PA, Gupta N, Kishore K, et al. Coupled effect of B. Sphaericus bacteria and calcined clay mineral on OPC concrete. Materials Today: Proc. 2021;44:113–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.