131
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of nano-SiO2 on the hydration products of C3S in Portland cement

, , , ORCID Icon, &

References

  • Liu K, Yu J, Xia Y, et al. Quantitative determination of the hydrostatic pressure of oil-well cement slurry using its hydration kinetics. Constr Build Mater. 2022;340:127704. doi: 10.1016/j.conbuildmat.2022.127704.
  • Pang X, Sun L, Chen M, et al. Influence of curing temperature on the hydration and strength development of class G Portland cement. Cem Concr Res. 2022;156:106776. doi: 10.1016/j.cemconres.2022.106776.
  • Samarakoon MH, Ranjith PG, Hui Duan W, et al. Early age properties of alkali-activated cement and class G cement under different saturation conditions in oil well applications. Constr Build Mater. 2021;271:121543. doi: 10.1016/j.conbuildmat.2020.121543.
  • Jung H, Frigaard IA. Evaluation of common cementing practices affecting primary cementing quality. J Pet Sci Eng. 2022;208:109622. doi: 10.1016/j.petrol.2021.109622.
  • Wang C, Wang L, Yao X, et al. The effect of rutin on the early-age hydration of oil well cement at varying temperatures. Cem Concr Compos. 2022;128:104438. doi: 10.1016/j.cemconcomp.2022.104438.
  • Zheng Y, Sun D, Feng Q, et al. Nano-SiO2 modified basalt fiber for enhancing mechanical properties of oil well cement. Colloids Surf A. 2022;648:128900. doi: 10.1016/j.colsurfa.2022.128900.
  • Pang X, Qin J, Sun L, et al. Long-term strength retrogression of silica-enriched oil well cement: a comprehensive multi-approach analysis. Cem Concr Res. 2021;144:106424. doi: 10.1016/j.cemconres.2021.106424.
  • Qin J, Pang X, Santra A, et al. Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions. J Rock Mech Geotech Eng. 2023;15(1):191–203. doi: 10.1016/j.jrmge.2022.02.005.
  • Wang C, Chen X, Wei X, et al. Can nanosilica sol prevent oil well cement from strength retrogression under high temperature? Constr Build Mater. 2017;144:574–585. doi: 10.1016/j.conbuildmat.2017.03.221.
  • Bjørge R, Gawel K, Chavez Panduro EA, et al. Carbonation of silica cement at high-temperature well conditions. Int J Greenhouse Gas Control. 2019;82:261–268. doi: 10.1016/j.ijggc.2019.01.011.
  • Costa B, Souza G, Freitas J, et al. Silica content influence on cement compressive strength in wells subjected to steam injection. J Pet Sci Eng. 2017;158:626–633. doi: 10.1016/j.petrol.2017.09.006.
  • Murtaza M, Rahman MK, Al-Majed AA, et al. Mechanical, Rheological and Microstructural Properties of Saudi Type G Cement Slurry with Silica Flour Used in Saudi Oil Field under HTHP Conditions, Society of Petroleum Engineers - SPE Saudi Arabia Section Technical Symposium and Exhibition 2013, (2013).
  • Xue Q, Ni C, Wu Q, et al. Effects of nano-CSH on the hydration process and mechanical property of cementitious materials. J Sustain Cement-Based Mater. 2021;11(6):378–388. doi: 10.1080/21650373.2021.1972487.
  • Rupasinghe M, San Nicolas R, Mendis P, et al. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste. Cem Concr Compos. 2017;80:17–30. doi: 10.1016/j.cemconcomp.2017.02.011.
  • Goyal S, Joshi P, Singh R, Rohan, Applications and role of nano-silica particles on altering the properties and their usage for oil well cementing, Mater Today Proc, 46 (2021) 10681–10686. doi: 10.1016/j.matpr.2021.01.435.
  • Murthy RVVR, Chavali M, Mohammad F. Synergistic effect of nano-silica slurries for cementing oil and gas wells. Pet Res. 2020;5(1):83–91. doi: 10.1016/j.ptlrs.2019.10.001.
  • Jo B-W, Kim C-H, Tae G-h, et al. Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater. 2007;21(6):1351–1355. doi: 10.1016/j.conbuildmat.2005.12.020.
  • Mohammed A, Rafiq S, Mahmood W, et al. Characterization and modeling the flow behavior and compression strength of the cement paste modified with silica nano-size at different temperature conditions. Constr Build Mater. 2020;257:119590. doi: 10.1016/j.conbuildmat.2020.119590.
  • Gaitero JJ, Campillo I, Guerrero A. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem Concr Res. 2008;38(8–9):1112–1118. doi: 10.1016/j.cemconres.2008.03.021.
  • Hamada H, Shi J, Yousif ST, et al. Use of nano-silica in cement-based materials – a comprehensive review. J Sustain Cement-Based Mater. 2023;12(10):1286–1306. doi: 10.1080/21650373.2023.2214146.
  • Noik C, Rivereau A, Vernet C. Novel cements materials for high-pressure/high-temperature wells. European Petroleum Conference, 1998. doi: 10.2118/50589-MS.
  • Nelson EB. Well cementing, 2nd ed.Schlumberger, Sugar Land, 2006.
  • Wei T, Cheng X, Gu T, et al. The change and influence mechanism of the mechanical properties of tricalcium silicate hardening at high temperature. Constr Build Mater. 2021;308:125065. doi: 10.1016/j.conbuildmat.2021.125065.
  • Guo Z, Hou P, Xu Z, et al. Sulfate attack resistance of tricalcium silicate modified with nano-silica and supplementary cementitious materials. Constr Build Mater. 2022;321:126332. doi: 10.1016/j.conbuildmat.2022.126332.
  • Sharma U, Ali D, Singh LP. Formation of C–S–H nuclei using silica nanoparticles during early age hydration of cementitious system, CSIR-Central Building Research Institute, Roorkee, India, 2019.
  • Sharma U, Solanki A, Singh LP. Granulometric effect of silica nanoparticles on hydration kinetics and microstructure of cement based materials, CSIR-Central Building Research Institute, 2022. 1–13.
  • Singh LP, Bhattacharyya SK, Shah SP, et al. Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: part II. Constr Build Mater. 2016;102:943–949. doi: 10.1016/j.conbuildmat.2015.05.084.
  • Singh LP, Bhattacharyya SK, Shah SP, et al. Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: part I. Constr Build Mater. 2015;74:278–286. doi: 10.1016/j.conbuildmat.2014.08.046.
  • Sáez del Bosque IF, Martínez-Ramírez S, Blanco-Varela MT. FTIR study of the effect of temperature and nanosilica on the nano structure of C–S–H gel formed by hydrating tricalcium silicate. Constr Build Mater. 2014;52:314–323. doi: 10.1016/j.conbuildmat.2013.10.056.
  • Ibrahim M, Johari MAM, Hussaini SR, et al. Influence of pore structure on the properties of green concrete derived from natural pozzolan and nanosilica. J Sustain Cement-Based Mater. 2020;9(4):233–257. doi: 10.1080/21650373.2020.1715901.
  • Xu Z, Zhou Z, Du P, et al. Effects of nano-silica on hydration properties of tricalcium silicate. Constr Build Mater. 2016;125:1169–1177. doi: 10.1016/j.conbuildmat.2016.09.003.
  • Meng M. The spontaneous imbibition process of shale was studied based on nuclear magnetic resonance technology. Special Reserv. 2015;22:137–140, 158.
  • Yao Y, Liu D, Che Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel. 2010;89(7):1371–1380. doi: 10.1016/j.fuel.2009.11.005.
  • Madani H, Bagheri A, Parhizkar T. The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cem Concr Res. 2012;42(12):1563–1570. doi: 10.1016/j.cemconres.2012.09.004.
  • She A, Ma K, Liao G, et al. Investigation of hydration and setting process in nanosilica-cement blended pastes: in situ characterization using low field nuclear magnetic resonance. Constr Build Mater. 2021;304:124631. doi: 10.1016/j.conbuildmat.2021.124631.
  • Liu X, Liu L, Lyu K, et al. Enhanced early hydration and mechanical properties of cement-based materials with recycled concrete powder modified by nano-silica. J Build Eng. 2022;50:104175. doi: 10.1016/j.jobe.2022.104175.
  • Rupasinghe M, Mendis P, Sofi M, et al. Modelling of nano-silica in cement paste. In Fourth international conference on smart materials and nanotechnology in engineering, Vol. 8793 2013. doi: 10.1117/12.2028056.
  • Wei T, Cheng X, Liu H, et al. Crystallization of tricalcium silicate blended with different silica powder dosages at high temperature. Constr Build Mater. 2022;316:125884. doi: 10.1016/j.conbuildmat.2021.125884.
  • Wang C, Chen X, Zhou W, et al. Working mechanism of nano-SiO2 sol to alleviate the strength decline of oil well cement under high temperature. Nat Gas Ind B. 2019;6(5):517–523. doi: 10.1016/j.ngib.2019.03.008.
  • Huang L, Yang Z. Early hydration of tricalcium silicate with potassium hydroxide and sulfate from pore solution and solid view. Constr Build Mater. 2020;230:116988. doi: 10.1016/j.conbuildmat.2019.116988.
  • Zhang J, Kang Z, Yang Y, et al. Enhancement of heat-cured cement paste with tannic acid. Cem Concr Compos. 2023;137:104931. doi: 10.1016/j.cemconcomp.2023.104931.
  • Zhang Y, Wang C, Chen Z, et al. Research on the strength retrogression and mechanism of oil well cement at high temperature (240 °C). Constr Build Mater. 2023;363:129806. doi: 10.1016/j.conbuildmat.2022.129806.
  • Geng C, Yao X, Dai D, et al. Effect of SiO2 crystalline properties on high-temperature mechanical properties of cement. Drill Fluid Complet Fluid. 2020;37:777–783.
  • Black L, Stumm A, Garbev K, et al. X-ray photoelectron spectroscopy of the cement clinker phases tricalcium silicate and β-dicalcium silicate. Cem Concr Res. 2003;33(10):1561–1565. doi: 10.1016/S0008-8846(03)00097-8.
  • Black L, Garbev K, Gee I. Surface carbonation of synthetic C-S-H samples: a comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy. Cem Concr Res. 2008;38(6):745–750. doi: 10.1016/j.cemconres.2008.02.003.
  • Li Y, Mi T, Ding X, et al. Assessment of compositional changes of carbonated cement pastes subjected to high temperatures using in-situ raman mapping and XPS. J Build Eng. 2022;45:103454. doi: 10.1016/j.jobe.2021.103454.
  • Rheinheimer V, Casanova I. An X-ray photoelectron spectroscopy study of the hydration of C2S thin films. Cem Concr Res. 2014;60:83–90. doi: 10.1016/j.cemconres.2014.03.005.
  • Black L, Garbev K, Stemmermann P, et al. X-ray photoelectron study of oxygen bonding in crystalline C-S-H phases. Phys Chem Minerals. 2004;31:337–346.
  • Wang X, Pan Z. Chemical changes and reaction mechanism of hardened cement paste–(NH4)2SO4–H2O system. Constr Build Mater. 2017;152:434–443. doi: 10.1016/j.conbuildmat.2017.07.018.
  • Moutaoukil G, Alehyen S, Sobrados I, et al. Microstructural and 29Si and 27Al MAS NMR spectroscopic evaluations of alkali cation and curing effects on class C fly ash-based geopolymer. Chem Data Collect. 2022;41:100898. doi: 10.1016/j.cdc.2022.100898.
  • Lv L, Zhao X, He Y, et al. Effect of calcium silicate ratio on morphology and structure of calcium silicate hydrate. In The first annual Conference of Cement Branch of Chinese Silicate Society, Jiaozuo, Henan Province, China, 2009. pp. 372–379.
  • Wang L, Jin M, Zhou S, et al. Investigation of microstructure of C-S-H and micro-mechanics of cement pastes under NH4NO3 dissolution by 29Si MAS NMR and microhardness. Measurement. 2021;185:110019. doi: 10.1016/j.measurement.2021.110019.
  • Xiao J, Li H, Zhu H, et al. The hydration products of slag silicate composite cementitious materials were analyzed by infrared and nuclear magnetic techniques. J Mater Sci Eng. 2018;36:644–649 + 630.
  • Higl J, Hinder D, Rathgeber C, et al. Detailed in situ ATR-FTIR spectroscopy study of the early stages of C-S-H formation during hydration of monoclinic C3S. Cem Concr Res. 2021;142:106367. doi: 10.1016/j.cemconres.2021.106367.
  • Xu B, Yuan B, Wang Y, et al. Nanosilica-latex reduction carbonation-induced degradation in cement of CO2 geological storage wells. J Nat Gas Sci Eng. 2019;65:237–247. doi: 10.1016/j.jngse.2019.03.013.
  • Yuan B, Yang S, Xu B, et al. Effects of amorphous nano-silica on hydration products of tricalcium silicate at 80 °C. Constr Build Mater. 2023;370:130716. doi: 10.1016/j.conbuildmat.2023.130716.
  • Yao X, Ge Z, Wang X, et al. Research progress on the mechanism of mechanical property decline of sand oil well cement. Oil Drill Technol. 2018;46:17–23.
  • Singh LP, Zhu W, Howind T, et al. Quantification and characterization of C-S-H in silica nanoparticles incorporated cementitious system. Cem Concr Compos. 2017;79:106–116. doi: 10.1016/j.cemconcomp.2017.02.004.
  • Yuan B, Wang Y, Yang Y, et al. Wellbore sealing integrity of nanosilica-latex modified cement in natural gas reservoirs with high H2S contents. Constr Build Mater. 2018;192:621–632. doi: 10.1016/j.conbuildmat.2018.10.165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.