52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interactions between alkali-activated and cement-based mortars and biofilm and their influence on microbial induced mortar deterioration

, ORCID Icon, , &

References

  • Wu M, Wang T, Wu K, et al. Microbiologically induced corrosion of concrete in sewer structures: a review of the mechanisms and phenomena. Constr Build Mater. 2019;239:117813. doi: 10.1016/j.conbuildmat.2019.117813.
  • Bowker R, Audibert G, Shah H, et al. 1992. Detection, control, and correction of hydrogen sulfide corrosion in existing wastewater systems. Washington (DC): Office of Wastewater Enforcement and Compliance, Office of Water.
  • Jiang G, Wightman E, Donose BC, et al. The role of iron in sulfide induced corrosion of sewer concrete. Water Res. 2013;49:166–174. doi: 10.1016/j.watres.2013.11.007.
  • Yuan H, Dangla P, Chatellier P, et al. Degradation modelling of concrete submitted to sulfuric acid attack. Cem Concr Res. 2013;53(2):267–277. doi: 10.1016/j.cemconres.2013.08.002.
  • Han J. Nonuniform damage of primary sedimentation Pool concrete by city sewage. China Civ Eng J. 2005;38:45–49. doi: 10.1007/s11769-005-0030-x.
  • O’Connell M, Mcnally C, Richardson MG. Biochemical attack on concrete in wastewater applications: a state of the art review. Cem Concr Compos. 2010;32(7):479–485. doi: 10.1016/j.cemconcomp.2010.05.001.
  • Zhang XW, Zhang X. Mechanism and research approach of microbial corrosion of concrete. J Build Mater. 2006;9(1):52–58. doi: 10.1016/S1010-5182(06)60391-0.
  • Parker CD. The corrosion of concrete isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Aust J Exp Biol Med. 1945;23(2):91–98. doi: 10.1038/icb.1945.14.
  • Kuliczkowska E. Risk of structural failure in concrete sewers due to internal corrosion. Eng Fail Anal. 2016;66:110–119. doi: 10.1016/j.engfailanal.2016.04.026.
  • Jain A, Bhosle NB. Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling. 2009;25(1):13–19. doi: 10.1080/08927010802411969.
  • Kong LJ, Han MD, Yang X. Evaluation on relationship between accelerated carbonation and deterioration of concrete subjected to a high-concentrated sewage environment. Constr Build Mater. 2020;237(1):117650. doi: 10.1016/j.conbuildmat.2019.117650.
  • Lv JF, Mao J, Ba HJ. Influence of marine microorganisms on the permeability and microstructure of mortar. Constr Build Mater. 2015;77:33–40. doi: 10.1016/j.matchemphys.2015.08.004.
  • Kong LJ, Bao X, Cao MF. Effect of biofilm on corrosion of concrete in sewage. J Chin Ceram Soc. 2016;44:279–285. doi: 10.14062/j.issn.0454-5648.2016.02.14.
  • Herisson J, Hullebusch EV, Moletta-Denat M, et al. Toward an accelerated biodeterioration test to understand the behavior of Portland and calcium aluminate cementitious materials in sewer networks. Int Biodeterior Biodegrad. 2013;84:236–243. doi: 10.1016/j.ibiod.2012.03.007.
  • Mwk A, Kls B, Mga A. The corrosion rate and microstructure of Portland cement and calcium aluminate cement-based concrete mixtures in outfall sewers: a comparative study. Cem Concr Res. 2019;124:105818–105818. doi: 10.1016/j.cemconres.2019.105818.
  • Khan HA, Castel A, Khan M, et al. Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid. Cem Concr Res. 2019;124:105852. doi: 10.1016/j.cemconres.2019.105852.
  • Herisson J, Gueguen-Minerbe M, Van Hullebusch ED, et al. Influence of the binder on the behaviour of mortars exposed to h2s in sewer networks: a long-term durability study. Mater Struct. 2017;50(1):8.1–8.18. doi: 10.1617/s11527-016-0919-0.
  • Vishwakarma V, George RP, Ramachandran D, et al. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments. Environ Technol. 2014;35(1-4):42–51. doi: 10.1080/09593330.2013.808249.
  • Monteny J, Vincke E, Beeldens A, et al. Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem Concr Res. 2000;30(4):623–634. doi: 10.1016/s0008-8846(00)00219-2.
  • Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal Calorim. 1989;35(2):429–441. doi: 10.1007/BF01904446.
  • Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43(jun):125–130. doi: 10.1016/j.conbuildmat.2013.01.023.
  • Singh B, Ishwarya G, Gupta M, et al. Geopolymer concrete: a review of some recent developments. Constr Build Mater. 2015;85:78–90. doi: 10.1016/j.conbuildmat.2015.03.036.
  • Grengg C, Mittermayr F, Ukrainczyk N, et al. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: a review. Water Res. 2018;134:341–352. S0043135418300575. doi: 10.1016/j.watres.2018.01.043.
  • Pacheco-Torgal F. Handbook of alkali-activated cements, mortars and concretes.Sawston Cambridge (UK): Woodhead Publishing; 2015.
  • Xie Y, Lin X, Ji T, et al. Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Constr Build Mater. 2019;228(Dec.20):117071. doi: 10.1016/j.conbuildmat.2019.117071.
  • Hernandez M, A. Marchand E, Roberts D, et al. In situ assessment of active thiobacillus species in corroding concrete sewers using fluorescent RNA probes. Int Biodeterior Biodegrad. 2002;49(4):271–276., doi: 10.1016/S0964-8305(02)00054-9.
  • Liang X, Ji Y. Mechanical properties and permeability of red mud-blast furnace slag-based geopolymer concrete. SN Appl. Sci. 2021;3(1):1–10. doi: 10.1007/s42452-020-03985-4.
  • Vu TH, Gowripalan N, Silva PD, et al. Assessing carbonation in one-part fly ash/slag geopolymer mortar: change in pore characteristics using the state-of-the-art technique neutron tomography. Cem Concr Compos. 2020;114:103759. doi: 10.1016/j.cemconcomp.2020.103759.
  • Yang Y, Ji T, Lin X, et al. Biogenic sulfuric acid corrosion resistance of new artificial reef concrete. Constr Build Mater. 2018;158(Jan. 15):33–41. doi: 10.1016/j.conbuildmat.2017.10.007.
  • Tom D, Piyush C. Biogenic acid resistance of calcium sulfoaluminate cement: revelations from a field study. Cem Concr Compos. 2024;145:105324. doi: 10.1016/j.cemconcomp.2023.105324.
  • Vafaei M, Allahverdi A, Dong P, et al. Durability performance of geopolymer cement based on fly ash and calcium aluminate cement in mild concentration acid solutions. J Sustain Cem Based Materi. 2019;8(5):290–308. doi: 10.1080/21650373.2019.1615568.
  • Wu L, Hu C, Liu WV. Effects of pozzolans on acid resistance of shotcrete for sewer tunnel rehabilitation. J Sustain Cem Based Mater. 2019:8:1–23. doi: 10.1080/21650373.2020.1810168.
  • Babaee M, Khan M, Castel A. Passivity of embedded reinforcement in carbonated low-calcium fly ash-based geopolymer concrete. Cem Concr Compos. 2017;85:32–43. doi: 10.1016/j.cemconcomp.2017.10.001.
  • Khan HA, Yasir M, Castel A. Performance of cementitious and alkali-activated mortars exposed to laboratory simulated microbially induced corrosion test. Cem Concr Compos. 2022;128:104445. doi: 10.1016/j.cemconcomp.2022.104445.
  • Aba B, Cp B, Mpl A, et al. Resistance to biodeterioration of aluminium-rich binders in sewer network environment: study of the possible bacteriostatic effect and role of phase reactivity . Cem Concr Res. 2019;123:105785–105785.
  • Huber B, Hilbig H, Mago MM, et al. Comparative analysis of biogenic and chemical sulfuric acid attack on hardened cement paste using laser ablation-ICP-MS. Cement Concr. Res. 2016;87:14–21. doi: 10.1016/j.cemconres.2016.05.003.
  • Xie Y, Lin X, Pan W, et al. Study on corrosion mechanism of alkali-activated concrete with biogenic sulfuric acid. Constr Build Mater. 2018;188(NOV.10):9–16. doi: 10.1016/j.conbuildmat.2018.08.105.
  • Satoh H, Odagiri M, Ito T, et al. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res. 2009;43(18):4729–4739. doi: 10.1016/j.watres.2009.07.035.
  • Rong H, Zhang S, Ma G, et al. Formation, growth and corrosion effect of sulfur oxidizing bacteria biofilm on mortar. Constr Build Mater. 2020;268(1):121218. doi: 10.1016/j.conbuildmat.2020.121218.
  • Bairi LR, George RP, Kamachi Mudali U. Microbially induced corrosion of D9 stainless steel–zirconium metal waste form alloy under simulated geological repository environment. Corrosion Sci. 2012;61:19–27. doi: 10.1016/j.corsci.2012.04.019.
  • Kanwal M, Khushnood RA, Adnan F, et al. Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment. Cem Concr Compos. 2023;137:104937. doi: 10.1016/j.cemconcomp.2023.104937.
  • Kong LJ, Liu C, Cao MF, et al. Mechanism study of the role of biofilm played in sewage corrosion of mortar. Constr Build Mater. 2018;164:44–56. doi: 10.1016/j.conbuildmat.2017.12.190.
  • Liu HW, Xu DK, Wu YN, et al. Research progress in corrosion of steel materials under microbial biofifilm. Corros Sci. Prot Technol. 2015;27(05):409–418.
  • Szymon M, Sielaff AM, Dietmar S. Acid attack on concrete – damage zones of concrete and kinetics of damage in a simulating laboratory test method for wastewater systems. Constr Build Mater. 2023;366:130121. doi: 10.1016/j.conbuildmat.2022.130121.
  • Shi C, Stegemann JA. Acid corrosion resistance of different cementing materials. Cem Concr Res. 2000;30(5):803–808. doi: 10.1016/s0008-8846(00)00234-9.
  • Wang Y, Cao Y, Zhang Z, et al. Study of acidic degradation of alkali-activated materials using synthetic C-(N)-A-S-H and N-A-S-H gels. Compos Part B: Eng. 2022;230:109510. doi: 10.1016/j.compositesb.2021.109510.
  • Grengg C, Ukrainczyk N, Koraimann G, et al. Long-term in situ performance of geopolymer, calcium aluminate and Portland cement-based materials exposed to microbially induced acid corrosion. Cem Concr Res. 2020;131:106034. doi: 10.1016/j.cemconres.2020.106034.
  • Ali HA, Xuan D, Lu JX, et al. Enhancing the resistance to microbial induced corrosion of alkali-activated glass powder/GGBS mortars by calcium aluminate cement. Constr Build Mater. 2022;341:127912. (Jul.25):doi: 10.1016/j.conbuildmat.2022.127912.
  • Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248–254. doi: 10.1016/0003-2697(76)90527-3.
  • Ma M, Liu JB, Chen LL. Optimization and improvement of chromogenic conditions for the determination of polysaccharide content by phenol sulfuric acid method. Jiangsu Agric Sci. 2015;43(12):323–324. doi: 10.15889/j.issn.1002-1302.2015.12.102.
  • Ma ZQ, Yi N, Zhao WQ, et al. Drawing of standard curve in biological experiment. Exp Sci Technol. 2014;12(05):8–10. doi: 10.3969/j.issn.1672-4550.2014.05.003.
  • Qiu P, Zhang L, Li Y, et al. Permeability evolution model of coarse porous concrete under sulphuric acid corrosion. Constr Build Mater. 2022;326:126475. doi: 10.1016/j.conbuildmat.2022.126475.
  • Valencia-Saavedra WG, Mejía de Gutiérrez R, Puertas F. Performance of FA-based geopolymer concretes exposed to acetic and sulfuric acids. Constr Build Mater. 2020;257:119503. doi: 10.1016/j.conbuildmat.2020.119503.
  • Davis JL, Nica D, Shields K, et al. Analysis of concrete from corroded sewer pipe. Int Biodeterior Biodegrad. 1998;42(1):75–84. doi: 10.1016/S0964-8305(98)00049-3.
  • Marchand J, Skalny JP, Odler I. Sulfate attack on concrete. Boca Raton (US): CRC Press; 2001.
  • Stark J, Wicht B. Dauerhaftigkeit von beton: der baustoff als werkstoff. WILEY‐VCH Verlag.Berlin (GER): Baupraxis Birkhauser; 2001.
  • Allahverdi A, Kvára F. Sulfuric acid attack on hardened paste of geopolymer cements part 1. Mechanism of corrosion at relatively high concentrations. Ceram Silikaty. 2005;49(4):225–229.
  • Bernal SA, Rodríguez ED, Mejía de Gutiérrez R, et al. Performance of alkali-activated slag mortars exposed to acids. J Sustain Cem Based Mater. 2012;1(3):138–151. doi: 10.1080/21650373.2022.2153389.
  • Grengg C, Mittermayr F, Koraimann G, et al. The decisive role of acidophilic bacteria in concrete sewer networks: a new model for fast progressing microbial concrete corrosion. Cem Concr Res. 2017;101:93–101. doi: 10.1016/j.cemconres.2017.08.020.
  • Aiken TA, Sha W, Kwasny J, et al. Resistance of geopolymer and Portland cement based systems to silage effluent attack. Cem Concr Res. 2017;92:56–65. doi: 10.1016/j.cemconres.2016.11.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.