101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unlocking the role of recycled polymer fibres on dynamic fracture characteristics of concrete after exposure to elevated temperatures

, , &

References

  • Esaker M, Thermou GE, Neves L. Impact resistance of concrete and fibre-reinforced concrete: a review. Int J Impact Eng. 2023;180:104722. doi: 10.1016/j.ijimpeng.2023.104722.
  • Liu K, Wu C, Li X, et al. The influences of cooling regimes on fire resistance of ultra-high performance concrete under static-dynamic coupled loads. J Build Eng. 2021;44:103336. doi: 10.1016/j.jobe.2021.103336.
  • Zhang X, Wu X, Park Y, et al. Perspectives of big experimental database and artificial intelligence in tunnel fire research. Tunn Undergr Sp Technol. 2021;108:103691. doi: 10.1016/j.tust.2020.103691.
  • Mindeguia JC, Pimienta P, Noumowé A, et al. Temperature, pore pressure and mass variation of concrete subjected to high temperature – experimental and numerical discussion on spalling risk. Cem Concr Res. 2010;40(3):477–487. doi: 10.1016/j.cemconres.2009.10.011.
  • Ozawa M, Uchida S, Kamada T, et al. Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission. Constr Build Mater. 2012;37:621–628. doi: 10.1016/j.conbuildmat.2012.06.070.
  • Yu X, Chen L, Fang Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate. Int J Impact Eng. 2017;101:66–77. doi: 10.1016/j.ijimpeng.2016.11.009.
  • Phan LT. Pore pressure and explosive spalling in concrete. Mater Struct. 2008;41(10):1623–1632. doi: 10.1617/s11527-008-9353-2.
  • Jiang C, Fang J, Chen JY, et al. Modeling the instantaneous phase composition of cement pastes under elevated temperatures. Cem Concr Res. 2020;130:105987. doi: 10.1016/j.cemconres.2020.105987.
  • Fu Q, Bu M, Xu W, et al. Comparative analysis of dynamic constitutive response of hybrid fibre-reinforced concrete with different matrix strengths. Int J Impact Eng. 2021;148:103763. doi: 10.1016/j.ijimpeng.2020.103763.
  • Yu Q, Zhuang W, Shi C. Research progress on the dynamic compressive properties of ultra-high performance concrete under high strain rates. Cem Concr Compos. 2021;124:0958–9465.
  • Jin L, Li J, Yu W, et al. Modelling dynamic failure of geometrical-similar concrete subjected to tension-compression loads: effect of strain rate and lateral stress ratio. Eng Fract Mech. 2022;271:108661. doi: 10.1016/j.engfracmech.2022.108661.
  • Groeneveld AB, Ahlborn TM, Crane CK, et al. Dynamic strength and ductility of ultra-high performance concrete with flow-induced fiber alignment. Int J Impact Eng. 2018;111:37–45. doi: 10.1016/j.ijimpeng.2017.08.009.
  • Wu Z, Shi C, He W, et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements. Cem Concr Compos. 2017;79:148–157. doi: 10.1016/j.cemconcomp.2017.02.010.
  • Chen M, Yang F, Zhang T, et al. Effect of elevated temperatures on behaviour of recycled steel and polypropylene fibre reinforced ultra-high performance concrete under dynamic splitting tension. J Build Eng. 2024;84:108586. doi: 10.1016/j.jobe.2024.108586.
  • Yu W, Jin L, Du X, et al. Effect of initial damage state on static and dynamic fracture of concrete with different sizes: an experimental study. Eng Fract Mech. 2022;274:108797. doi: 10.1016/j.engfracmech.2022.108797.
  • Pakravan HR, Latifi M, Jamshidi M. Hybrid short fiber reinforcement system in concrete: a review. Constr Build Mater. 2017;142:280–294. doi: 10.1016/j.conbuildmat.2017.03.059.
  • Noh HW, Truong VD, Cho JY, et al. Dynamic increase factors for fiber-reinforced cement composites: a review. J Build Eng. 2022;56:104769. doi: 10.1016/j.jobe.2022.104769.
  • Gong J, Ma Y, Fu J, et al. Utilization of fibers in ultra-high performance concrete: a review. Compos Part B Eng. 2022;241:109995. doi: 10.1016/j.compositesb.2022.109995.
  • Wu HL, Zhang D, Ellis BR, et al. Development of reactive MgO-based engineered cementitious composite (ECC) through accelerated carbonation curing. Constr Build Mater. 2018;191:23–31. doi: 10.1016/j.conbuildmat.2018.09.196.
  • Chen M, Wang Y, Zhang T, et al. Microstructural evolution and dynamic compressive properties of engineered cementitious composites at elevated temperatures. J Build Eng. 2023;71:106519. doi: 10.1016/j.jobe.2023.106519.
  • Park SE, Choi J, Il, Nguyễn HH, et al. Cementless ultra-ductile composites reinforced by polyethylene-based short selvedge fibers for sustainable and resilient infrastructure. J Build Eng. 2023;68:106198. doi: 10.1016/j.jobe.2023.106198.
  • Cai R, Liu J-C, Ye H. Spalling prevention of Ultrahigh-Performance concrete: comparative effectiveness of polyethylene terephthalate and polypropylene fibers. J Mater Civ Eng. 2021;33(12):1–13. doi: 10.1061/(ASCE)MT.1943-5533.0003980.
  • Zhang D, Tan KH. Effect of various polymer fibers on spalling mitigation of ultra-high performance concrete at high temperature. Cem Concr Compos. 2020;114:103815. doi: 10.1016/j.cemconcomp.2020.103815.
  • Ma Q, Guo R, Zhao Z, et al. Mechanical properties of concrete at high temperature-A review. Constr Build Mater. 2015;93:371–383. doi: 10.1016/j.conbuildmat.2015.05.131.
  • Li Y, Tan KH, Yang EH. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cem Concr Compos. 2019;96:174–181. doi: 10.1016/j.cemconcomp.2018.11.009.
  • Banerji S, Kodur V, Solhmirzaei R. Experimental behavior of ultra high performance fiber reinforced concrete beams under fire conditions. Eng Struct. 2020;208:110316. doi: 10.1016/j.engstruct.2020.110316.
  • Zhang T, Zhang Y, Zhu H, et al. Characterizing the thermal properties of hybrid polypropylene-steel fiber reinforced concrete under heat exposure: insights into fiber geometry and orientation distribution. Compos Struct. 2021;275:114457. doi: 10.1016/j.compstruct.2021.114457.
  • Alavi Nia A, Hedayatian M, Nili M, et al. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. Int J Impact Eng. 2012;46:62–73. doi: 10.1016/j.ijimpeng.2012.01.009.
  • Li L, Wang H, Wu J, et al. Experimental and numerical investigation on impact dynamic performance of steel fiber reinforced concrete beams at elevated temperatures. J Build Eng. 2022;47:103841. doi: 10.1016/j.jobe.2021.103841.
  • Li L, Zhang R, Jin L, et al. Experimental study on dynamic compressive behavior of steel fiber reinforced concrete at elevated temperatures. Constr Build Mater. 2019;210:673–684. doi: 10.1016/j.conbuildmat.2019.03.138.
  • Zhang H, Wang L, Zheng K, et al. Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete. Constr Build Mater. 2018;187:584–595. doi: 10.1016/j.conbuildmat.2018.07.164.
  • Zhang D, Tu H, Li Y, et al. Effect of fiber content and fiber length on the dynamic compressive properties of strain-hardening ultra-high performance concrete. Constr Build Mater. 2022;328:127024. doi: 10.1016/j.conbuildmat.2022.127024.
  • Wu Z, Zhang J, Yu H, et al. Experiment and mesoscopic modelling on the dynamic compressive behaviors of a new carbon fiber-reinforced cement-based composite. Cem Concr Compos. 2022;130:104519. doi: 10.1016/j.cemconcomp.2022.104519.
  • Onuaguluchi O, Banthia N. Scrap tire steel fiber as a substitute for commercial steel fiber in cement mortar: engineering properties and cost-benefit analyses. Resour Conserv Recycl. 2018;134:248–256. doi: 10.1016/j.resconrec.2018.03.014.
  • Thomas BS, Gupta RC. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew Sustain Energy Rev. 2016;54:1323–1333. doi: 10.1016/j.rser.2015.10.092.
  • Xiong Z, Fang Z, Feng W, et al. Review of dynamic behaviour of rubberised concrete at material and member levels. J Build Eng. 2021;38:102237. doi: 10.1016/j.jobe.2021.102237.
  • Chen M, Sun Z, Tu W, et al. Behaviour of recycled tyre polymer fibre reinforced concrete at elevated temperatures. Cem Concr Compos. 2021;124:104257. doi: 10.1016/j.cemconcomp.2021.104257.
  • Chen M, Zhong H, Chen L, et al. Engineering properties and sustainability assessment of recycled fibre reinforced rubberised cementitious composite. J Clean Prod. 2021;278:123996. doi: 10.1016/j.jclepro.2020.123996.
  • Zeiml M, Leithner D, Lackner R, et al. How do polypropylene fibers improve the spalling behavior of in-situ concrete. Cem Concr Res. 2006;36(5):929–942. doi: 10.1016/j.cemconres.2005.12.018.
  • Ranjbar N, Zhang M. Fiber-reinforced geopolymer composites: a review. Cem Concr Compos. 2020;107:103498. doi: 10.1016/j.cemconcomp.2019.103498.
  • Chen M, Chen W, Zhong H, et al. Experimental study on dynamic compressive behaviour of recycled tyre polymer fibre reinforced concrete. Cem Concr Compos. 2019;98:95–112. doi: 10.1016/j.cemconcomp.2019.02.003.
  • Chen M, Wang Y, Zhang T, et al. Behaviour of structural engineered cementitious composites under dynamic tensile loading and elevated temperatures. Eng Struct. 2023;280:115739. doi: 10.1016/j.engstruct.2023.115739.
  • Nazarimofrad E, Shaikh FUA, Nili M. Effects of steel fibre and silica fume on impact behaviour of recycled aggregate concrete. J Sustain Cem Mater. 2017;6(1):54–68. doi: 10.1080/21650373.2016.1230900.
  • Jelcic Rukavina M, Baricevic A, Serdar M, et al. Study on the post-fire properties of concrete with recycled tyre polymer fibres. Cem Concr Compos. 2021;123:104184. doi: 10.1016/j.cemconcomp.2021.104184.
  • Chinese National Standard GB 175–2007. Common Portland cement. Beijing: Standards Press of China, 2007.
  • Hao Y, Hao H, Jiang GP, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests. Cem Concr Res. 2013;52:63–70. doi: 10.1016/j.cemconres.2013.05.008.
  • Wu H, Lin X, Zhou A. A review of mechanical properties of fibre reinforced concrete at elevated temperatures. Cem Concr Res. 2020;135:106117. doi: 10.1016/j.cemconres.2020.106117.
  • Liang X, Wu C, Yang Y, et al. Experimental study on ultra-high performance concrete with high fire resistance under simultaneous effect of elevated temperature and impact loading. Cem Concr Compos. 2019;98:29–38. doi: 10.1016/j.cemconcomp.2019.01.017.
  • Su H, Xu J, Ren W. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature. Mater Des. 2014;56:579–588. doi: 10.1016/j.matdes.2013.11.024.
  • Phan LT, Lawson JR, Davis FL. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mat Struct. 2001;34(2):83–91. doi: 10.1007/BF02481556.
  • Sahmaran M, Lachemi M, Li VC. Assessing mechanical properties and microstructure of fire-damaged engineered cementitious composites. ACI Mater J. 2010;107:297–304.
  • Chen M, Jiang R, Zhang T, et al. Development of green engineered cementitious composites with acceptable dynamic split resistance utilising recycled polymer fibres. Constr Build Mater. 2024;415:134979. doi: 10.1016/j.conbuildmat.2024.134979.
  • Zhang T, Zhang M, Chen Q, et al. Enhancing the thermo-mechanical properties of calcium aluminate concrete at elevated temperatures using synergistic flame-retardant polymer fibres. Cem Concr Compos. 2023;140:105088. doi: 10.1016/j.cemconcomp.2023.105088.
  • Lee J, Xi Y, Willam K, et al. A multiscale model for modulus of elasticity of concrete at high temperatures. Cem Concr Res. 2009;39(9):754–762. doi: 10.1016/j.cemconres.2009.05.008.
  • Wang J, Yang S, Sun Z, et al. Properties of alkali-activated slag and fly ash blended sea sand concrete exposed to elevated temperature. J Sustain Cem Mater. 2023;13:1–26.
  • Huo JS, He YM, Xiao LP, et al. Experimental study on dynamic behaviours of concrete after exposure to high temperatures up to 700 °C. Mater Struct. 2013;46(1–2):255–265. doi: 10.1617/s11527-012-9899-x.
  • Chen L, Xie P, Feng B, et al. A modified K&C model for concrete subjected to coupled effect of high temperature and high strain rate. Int J Impact Eng. 2023;181:104760. doi: 10.1016/j.ijimpeng.2023.104760.
  • Ayhan B, Lale E. Modeling strain rate effect on tensile strength of concrete using damage plasticity model. Int J Impact Eng. 2022;162:104132. doi: 10.1016/j.ijimpeng.2021.104132.
  • Alneasan M, Behnia M. Strain rate effects on the crack propagation speed under different loading modes (I, II and I/II): experimental investigations. Eng Fract Mech. 2021;258:108118. doi: 10.1016/j.engfracmech.2021.108118.
  • Liu C, Hou J, Hao Y, et al. Effect of high strain rate and confinement on the compressive properties of autoclaved aerated concrete. Int J Impact Eng. 2021;156:103943. doi: 10.1016/j.ijimpeng.2021.103943.
  • Pająk M, Janiszewski J. Influence of aggregate and recycled steel fibres on the strain rate sensitivity of mortar and concrete. Constr Build Mater. 2023;363:129855. doi: 10.1016/j.conbuildmat.2022.129855.
  • Wei X, Ren X. Coupled viscosity-damage model for concrete under high strain rate. Eng Fract Mech. 2023;277:108985. doi: 10.1016/j.engfracmech.2022.108985.
  • Hiremath PN, Yaragal SC. Performance evaluation of reactive powder concrete with polypropylene fibers at elevated temperatures. Constr Build Mater. 2018;169:499–512. doi: 10.1016/j.conbuildmat.2018.03.020.
  • Zhang T, Zhu H, Zhou L, et al. Multi-level micromechanical analysis of elastic properties of ultra-high performance concrete at high temperatures: effects of imperfect interface and inclusion size. Compos Struct. 2021;262:113548. doi: 10.1016/j.compstruct.2021.113548.
  • Henry M, Darma IS, Sugiyama T. Analysis of the effect of heating and re-curing on the microstructure of high-strength concrete using X-ray CT. Constr Build Mater. 2014;67:37–46. doi: 10.1016/j.conbuildmat.2013.11.007.
  • Bian H, Hannawi K, Takarli M, et al. Effects of thermal damage on physical properties and cracking behavior of ultrahigh-performance fiber-reinforced concrete. J Mater Sci. 2016;51(22):10066–10076. doi: 10.1007/s10853-016-0233-9.
  • Xie J, Zhang Z, Lu Z, et al. Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature. Constr Build Mater. 2018;184:752–764. doi: 10.1016/j.conbuildmat.2018.07.035.
  • Deshpande AA, Kumar D, Ranade R. Influence of high temperatures on the residual mechanical properties of a hybrid fiber-reinforced strain-hardening cementitious composite. Constr Build Mater. 2019;208:283–295. doi: 10.1016/j.conbuildmat.2019.02.129.
  • Chen GM, He YH, Yang H, et al. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures. Constr Build Mater. 2014;71:1–15. doi: 10.1016/j.conbuildmat.2014.08.012.
  • Xiao J, Li L, Shen L, et al. Compressive behaviour of recycled aggregate concrete under impact loading. Cem Concr Res. 2015;71:46–55. doi: 10.1016/j.cemconres.2015.01.014.
  • Zhang T, Cui J, Chen M, et al. Feasibility of utilising waste tyre steel fibres to develop sustainable engineered cementitious composites: engineering properties, impact resistance and environmental assessment. J Clean Prod. 2023;427:139148. doi: 10.1016/j.jclepro.2023.139148.
  • Cao S, Hou X, Rong Q. Dynamic compressive properties of reactive powder concrete at high temperature: a review. Cem Concr Compos. 2020;110:103568. doi: 10.1016/j.cemconcomp.2020.103568.
  • Federation internationale du beton (fib). FIB model code for concrete structures. Switzerland: Fédération Internationale du Béton, 2013.
  • Hou X, Cao S, Zheng W, et al. Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates. Eng Struct. 2018;169:119–130. doi: 10.1016/j.engstruct.2018.05.036.
  • Li W, Luo Z, Long C, et al. Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading. Mater Des. 2016;112:58–66. doi: 10.1016/j.matdes.2016.09.045.
  • Chen X, Wu S, Zhou J. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Constr Build Mater. 2013;47:419–430. doi: 10.1016/j.conbuildmat.2013.05.063.
  • Li N, Jin Z, Long G, et al. Impact resistance of steel fiber-reinforced self-compacting concrete (SCC) at high strain rates. J Build Eng. 2021;38:102212. doi: 10.1016/j.jobe.2021.102212.
  • Le QX, Torero JL, Dao VTN. Stress–strain–temperature relationship for concrete. Fire Saf J. 2021;120:103126. doi: 10.1016/j.firesaf.2020.103126.
  • Xiao J, Li Z, Xie Q, et al. Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures. Fire Saf J. 2016;83:25–37. doi: 10.1016/j.firesaf.2016.04.006.
  • Luo X, Xu JY, Bai EL, et al. Study on the effect of basalt fiber on the energy absorption characteristics of porous material. Constr Build Mater. 2014;68:384–390. doi: 10.1016/j.conbuildmat.2014.06.072.
  • Chen L, Zhang X, Liu G. Analysis of dynamic mechanical properties of sprayed fiber-reinforced concrete based on the energy conversion principle. Constr Build Mater. 2020;254:119167. doi: 10.1016/j.conbuildmat.2020.119167.
  • Haridharan MK, Natarajan C, Chen SE. Evaluation of residual strength and durability aspect of concrete cube exposed to elevated temperature. J Sustain Cem Mater. 2017;6(4):231–253. doi: 10.1080/21650373.2016.1230898.
  • Zhao X, Xu S, Li Q, et al. Coupled effects of high temperature and strain rate on compressive properties of hybrid fiber UHTCC. Mater Struct. 2019;52(5):92. doi: 10.1617/s11527-019-1391-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.