29
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Research progress on use of carbon nanotubes in cementitious grouting materials

, &

References

  • Zhang J, Pei X, Wang W, et al. Hydration process and rheological properties of cementitious grouting material. Constr Build Mater. 2017;139:221–231. doi: 10.1016/j.conbuildmat.2017.01.111.
  • Hu CH, Wang YW, Zhu CX. Mechanical properties and microscopic mechanism of carbon fiber-reinforced polymer cement grouting materials. Bull Chin Ceramic Soc. 2022;41(01):20–26 + 50. doi: 10.16552/j.cnki.issn1001-1625.2022.01.001.
  • Li B, Fang HY, Du XM, et al. Longitudinal mechanical behavior of evacuated concrete pipe and improvement of self-expanding high-polymer grouting repair performance. Eng Mecha. 2023:1–12. Available from: http://kns.cnki.net/kcms/detail/11.2595.O3.20230224.1644.011
  • Zhou M, Bai JT, Guo LZ, et al. Optimization of coal gangue geopolymer grouting material ratio based on response surface method. Mater Guide. 2023;37(20):1–14. Available from: http://kns.cnki.net/kcms/detail/50.1078.tb.20220927.1832.006
  • Yang Q, Geng P, Wang J, et al. Research of asphalt–cement materials used for shield tunnel backfill grouting and effect on anti-seismic performance of tunnels. Constr Build Mater. 2022;318:125866. doi: 10.1016/j.conbuildmat.2021.125866.
  • Fang XD, Wei J, Feng ZL, et al. Application progress of grouting materials in airport runway engineering. Bull Chin Ceramic Soc. 2023;42(08):3017–3032. doi: 10.16552/j.cnki.issn1001-1625.20230707.001.
  • Qiu YL, Zheng WK, Shi BT, et al. Research on grouting experiment in aeolian sand tunnel. AMR. 2011;382:316–320. doi: 10.4028/www.scientific.net/AMR.382.316.
  • Ma C, Chen JS. Research progress on nano-modified cement-based grouting materials. Henan Sci Technol. 2022;41(24):77–82. doi: 10.19968/j.cnki.hnkj.1003-5168.2022.24.017.
  • De CC, Li W. A review of the application of carbon nanotubes for lithium-ion battery anode material. J Power Sources. 2012;208:74–85. doi: 10.1016/j.jpowsour.2012.02.013.
  • Liu B, Wang JY, Hu XR, et al. Study on the mechanical and damping properties of cement-based materials with carbon nanotubes and nano-silica. Concrete. 2022;(12):77–81.
  • Xue Q, Ni C, Wu Q, et al. Effects of nano-CSH on the hydration process and mechanical property of cementitious materials. J Sustain Cement Based Mater. 2022;11(6):378–388. doi: 10.1080/21650373.2021.1972487.
  • Li G, Shi X, Gao Y, et al. Reinforcing effects of carbon nanotubes on cement-based grouting materials under dynamic impact loading. Constr Build Mater. 2023;382:131083. doi: 10.1016/j.conbuildmat.2023.131083.
  • Abedi M, Gulisano F, Han B, et al. The pioneer of intelligent and sustainable construction in tunnel shotcrete applications: a comprehensive experimental and numerical study on a self-sensing and self-heating green cement-based composite. Meas Sci Technol. 2024;35(6):065601. doi: 10.1088/1361-6501/ad338e.
  • Liu YX, Zhang JH, Chi YY. Study of rheological properties of carbon Nanotube-Reinforced ultrafine cement grouting materials. Mag Concr Res. 2021;74(12):608–622. doi: 10.1680/jmacr.21.00005.
  • Han G, Xiang J, Jing H, et al. Carbon nanotubes assisted fly ash for cement reduction on the premise of ensuring the stability of the grouting materials. Constr Build Mater. 2023;368:130476. doi: 10.1016/j.conbuildmat.2023.130476.
  • Du MR. Mechanical characteristics and micro-mechanism of carbon nanotube-reinforced cement-based grouting materials. China University of Mining and Technology, 2018.
  • Hu T. Preparation of carbon nanotube cement-based grouting material and research on its enhancement of mechanical properties of rock fracture surfaces. China University of Mining and Technology, 2020. doi: 10.27623/d.cnki.gzkyu.2020.001769.
  • Gao Y. Study on the impermeability performance and mechanism of oxidized graphene-carbon nanotube-reinforced cement-based grouting material. China University of Mining and Technology, 2021. doi: 10.27623/d.cnki.gzkyu.2021.003045.
  • Du Y. Study on the mechanism of carbon nanotube cement-based grouting material reinforcing fractured rock. China University of Mining and Technology, 2021. doi: 10.27623/d.cnki.gzkyu.2021.002112.
  • Cao W, Song XM, Wang B, et al. Research progress on carbon nanotubes. Materials Guide. 2007;(S1):77–82.
  • Liu JH, Wu SQ, He CX, et al. Structure, properties, and applications of carbon nanotubes and carbon microtubes. J Shenz Univ (Sci Eng). 2013;30(1):1–11. doi: 10.3724/SP.J.1249.2013.01001.
  • Charlier A, McRae E, Heyd R, et al. Classification for double-walled carbon nanotubes. Carbon. 1999;37(11):1779–1783. doi: 10.1016/S0008-6223(99)00046-9.
  • Sinnott SB, Shenderova OA, White CT, et al. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon. 1998;36(1-2):1–9. doi: 10.1016/S0008-6223(97)00144-9.
  • Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett. 1997;79(7):1297–1300. doi: 10.1103/PhysRevLett.79.1297.
  • Sanchez F, Sobolev K. Nanotechnology in concrete–a review. Constr Build Mater. 2010;24(11):2060–2071. doi: 10.1016/j.conbuildmat.2010.03.014.
  • Tang MS, Yuan MQ, Han SF, et al. Crystalline state of MgO, FeO, and MnO in steel slag and volume stability of steel slag. J Chin Ceramic Soc. 1979;(01):35–46.
  • Yaghobian M, Whittleston G. A critical review of carbon nanomaterials applied in cementitious composites–a focus on mechanical properties and dispersion techniques. Alexandria Eng J. 2022;61(5):3417–3433. doi: 10.1016/j.aej.2021.08.053.
  • Borode AO, Ahmed NA, Olubambi PA. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Physics of Fluids. 2019;31(7):071301. doi: 10.1063/1.5105380.
  • Xu P, Shi L, Huang J, et al. Methods of dispersion and stabilization of several nanomaterials in water. Ferroelectrics. 2018;527(1):133–148. doi: 10.1080/00150193.2018.1450560.
  • Liu GD, Zhu XJ. Study on ultrasonic cavitation mechanism of honing. AMR. 2011;189-193:4149–4153. doi: 10.4028/www.scientific.net/AMR.189-193.4149.
  • Liu LS, Wang R, Ma SF, et al. Study on the current status of ultrasonic-assisted preparation of rare earth nanomaterials. Rare Earths. 2020;41(01):133–143. doi: 10.16533/j.cnki.15-1099/tf.20200007.
  • Retamal Marín RR, Babick F, Stintz M. Ultrasonic dispersion of nanostructured materials with probe sonication: practical aspects of sample preparation. Powder Technol. 2017;318:451–458. doi: 10.1016/j.powtec.2017.05.049.
  • Guo X, Zhang T. Effects of ultrasonically dispersed nano-slurries on solid waste-based autoclaved concrete (SWAC) and its leaching of heavy metals. J Sustain Cement Based Mater. 2022;11(3):149–163. doi: 10.1080/21650373.2021.1901790.
  • Mendoza O, Sierra G, Tobón JI. Influence of superplasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications. Constr Build Mater. 2013;47:771–778. doi: 10.1016/j.conbuildmat.2013.05.100.
  • Sobolkina A, Mechtcherine V, Khavrus V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem Concr Compos. 2012;34(10):1104–1113. doi: 10.1016/j.cemconcomp.2012.07.008.
  • Obukhova S, Korolev E. Physical processes occurring in dispersed media with carbon nanomaterials under the influence of ultrasonification. J Carbon Res. 2023;9(1):18. doi: 10.3390/c9010018.
  • Hou X, Jiang H, Ali MK, et al. Dispersion behavior assessment of the molybdenum disulfide nanomaterials dispersed into poly alpha olefin. J Mol Liq. 2020;311:113303. doi: 10.1016/j.molliq.2020.113303.
  • Luo JL, Duan ZD. Dispersion of carbon nanotubes and its effect on the mechanical properties of cement materials. J Buil Struct. 2008;29(S1):246–250. doi: 10.14006/j.jzjgxb.2008.s1.001.
  • Liu L, Li Y, Weng L, et al. Influence of dispersion methods of inorganic powders on performance of PI/Al2O3 composite films[C]//2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2015. p. 100–103.
  • Chu YF, Zhang L, Xie B, et al. Study on the mechanism of high-energy ball milling and breaking iron-doped δ-MnO2 for enhancing its capacitance. Materials Guide. 2022;36(20):77–83.
  • Liu AH, Zhang B, Wang H, et al. Study on the mechanical properties of multi-walled carbon nanotube-reinforced cement-based composites. J Hubei Polyt Instit. 2015;31(02):44–48.
  • Yue G, Cai XL, Wang KJ, et al. Interface reaction of CNTs/Al composites fabricated by high energy ball milling. AMR. 2013;750-752:90–94. doi: 10.4028/www.scientific.net/AMR.750-752.90.
  • Zhang D, Zheng XY, Wu ZJ, et al. Study on the foaming regularity of foam aluminum prepared by stirring friction welding. Hot Working Technol. 2022;51(04):69–73. doi: 10.14158/j.cnki.1001-3814.20211252.
  • Xu L, Wang JH, Wu RZ, et al. Electrodeposition, stir friction processing, and cold rolling preparation of high specific strength MWCNTs/Mg-14Li-1Al composite materials. Trans Nonferrous Met Soc China. 2022;32(12):3914–3925. doi: 10.1016/S1003-6326(22)66067-9.
  • Zhu YL, Cao Y, Huang GJ, et al. Study on fluid behavior of Cu/7075 aluminum alloy surface composites prepared by multi-pass stir friction processing. Rare Met. 2022;46(12):1533–1545. doi: 10.13373/j.cnki.cjrm.XY20120034.
  • Lü CJ. Study on the preparation of boron, carbon, and nitrogen ceramics by high-energy ball milling. Zhejiang University, 2006.
  • Han J, Chen J, Peng L, et al. Influence of processing parameters on thermal field in Mg–Nd–Zn–Zr alloy during friction stir processing. Mater. Design. 2016;94:186–194. doi: 10.1016/j.matdes.2016.01.044.
  • Ghaemi F, Abdullah LC, Kargarzadeh H, et al. Comparative study of the electrochemical, biomedical, and thermal properties of natural and synthetic nanomaterials. Nanoscale Res Lett. 2018;13(1):112. doi: 10.1186/s11671-018-2508-3.
  • Li CQ, Dong HB. Effect of electric field-induced orderly arrangement of multi-walled carbon nanotubes on the properties of multi-walled carbon nanotube/epoxy resin composites. Acta Mater Compos Sinica. 2018;35(09):2387–2396. doi: 10.13801/j.cnki.fhclxb.20171207.002.
  • Mo KW. Preparation of sea squirt cellulose nanocrystal gradient hydrogel by electrophoretic induction method. Hubei University, 2019. doi: 10.27130/d.cnki.ghubu.2019.000411.
  • Cao J, Lu RR, Li YL, et al. The investigation on electric-filed-directed growth of aligned carbon nanotube arrays. Spectros Spectr Analy. 2003;23(06):1079–1081.
  • Zhang DD, Zhang FH, Yang JX, et al. Research progress on surface modification of carbon fiber and its application in nylon composites. Eng Plast Appl. 2019;47(07):141–146.
  • Tirayaphanitchkul C, Imwiset K, Ogawa M. Nanoarchitectonics through organic modification of oxide based layered materials; concepts, methods and functions. Bull Chem Soc Japan. 2021;94(2):678–693. doi: 10.1246/bcsj.20200310.
  • Zheng Z, Cox MC, Li B. Surface modification of hexagonal boron nitride nanomaterials: a review. J Mater Sci. 2018;53(1):66–99. doi: 10.1007/s10853-017-1472-0.
  • Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: strategies and recent advances. Acta Biomater. 2020;118:1–17. doi: 10.1016/j.actbio.2020.10.004.
  • Kawamoto M, He P, Ito Y. Green processing of carbon nanomaterials. Adv Mater. 2017;29(25):1602423. doi: 10.1002/adma.201602423.
  • Lebrón-Colón M, Meador MA, Lukco D, et al. Surface oxidation study of single-wall carbon nanotubes. Nanotechnology. 2011;22(45):455707. doi: 10.1088/0957-4484/22/45/455707.
  • Sun YF, Wu F, Deng XY, et al. Effect of chemical modification on functionalization of carbon nanotubes by poly (ethylene glycol). Chin J Inorg Chem. 2008;24(1):98–104.
  • Ren L, Wang Q, Yan X, et al. Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity. Food Res Int. 2016;87:180–188. doi: 10.1016/j.foodres.2016.07.007.
  • Tao H, Lavoine N, Jiang F, et al. Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horiz. 2020;5(4):607–627. doi: 10.1039/d0nh00016g.
  • Li GY, Wang PM, Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon. 2005;43(6):1239–1245. doi: 10.1016/j.carbon.2004.12.017.
  • Zhou QY, Zhou D, Han BH. Supramolecular surface modification of carbon na-nomaterials and their ap-plications. Chem J Chinese Universities. 2011;32(9):2062.
  • Li A, Zhao YX, Feng YZ, et al. Research progress on dispersion methods of carbon nanotubes in polymer-based composites. New Chemical Materials. 2014;42(09):7–9.
  • Zhu GQ, He QK, Liu CG, et al. Preparation of Fe3O4 magnetic nanoparticles and their surface modification. J Nat Sci Hunan Normal Univ. 2016;39(03):46–55 + 74.
  • Ou BL, Li DX. Enhancement and toughening of PVC with surface-modified nano-SiO2. Acta Mater Compos Sinica. 2009;26(01):48–53. doi: 10.13801/j.cnki.fhclxb.2009.01.008.
  • Chen J, Yang JJ, Wu QY, et al. Preparation and properties of waterborne polyurethane composites modified by surface-functionalized carbon nanotubes. Polym Mater Sci Eng. 2020;36(05):64–70. doi: 10.16865/j.cnki.1000-7555.2020.0106.
  • Luo JL. Preparation and functional properties of carbon nanotube cement-based composites. Harbin Institute of Technology, 2009.
  • Hu YH, Shi XK, Ma XF, et al. Stable superhydrophobic surface constructed by in-situ grown ZnO nano-flowers on silicone rubber. Acta Mater Compos Sinica. 2022;39(04):1638–1647. doi: 10.13801/j.cnki.fhclxb.20210611.001.
  • Feng L, Zhang L, Chu S, et al. One-pot fabrication of nanozyme with 2D/1D heterostructure by in-situ growing MoS2 nanosheets onto single-walled carbon nanotubes with enhanced catalysis for colorimetric detection of glutathione. Anal Chim Acta. 2022;1221:340083. doi: 10.1016/j.aca.2022.340083.
  • Kaminska K, Lefebvre J, Austing DG, et al. Real-time in situ raman imaging of carbon nanotube growth. Nanotechnology. 2007;18(16):165707. doi: 10.1088/0957-4484/18/16/165707.
  • Sato K, Li JG, Kamiya H, et al. Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J Amer Ceram Soc. 2008;91(8):2481–2487. doi: 10.1111/j.1551-2916.2008.02493.x.
  • Rennhofer H, Zanghellini B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: a review. Nanomaterials. 2021;11(6):1469. doi: 10.3390/nano11061469.
  • Munir KS, Wen C. Deterioration of the strong sp2 carbon network in carbon nanotubes during the mechanical dispersion processing—a review. Crit Rev Solid State Mater Sci. 2016;41(5):347–366. doi: 10.1080/10408436.2015.1127205.
  • Grishchuk S, Schledjewski R. Mechanical dispersion methods for carbon nanotubes in aerospace composite matrix systems. Carbon Nanot Enhanc Aeros Pace Compos Mater New Generat Multifunct Hybrid Struct Compos. 2013;188:99–154.
  • Báez-Rodríguez A, Zamora-Peredo L, Soriano-Rosales MG, et al. ZnO nanocolumns synthesized by chemical bath process and spray pyrolysis: ultrasonic and mechanical dispersion of ZnO seeds and their effect on optical and morphological properties. J Lumin. 2020;218:116830. doi: 10.1016/j.jlumin.2019.116830.
  • Vandenabeele CR, Lucas S. Technological challenges and progress in nanomaterials plasma surface modification–a review. Mater Sci Eng Rep. 2020;139:100521. doi: 10.1016/j.mser.2019.100521.
  • Wan M. Preparation and surface modification of multi-walled carbon nanotubes. Huazhong Normal University, 2005.
  • Cui LN. In-situ growth of carbon nanotube/nano silver wire composite materials and their application research. Beijing University of Chemical Technology, 2015.
  • Sun S, Yu X, Han B, et al. In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: a review. Constr Build Mater. 2013;49:835–840. doi: 10.1016/j.conbuildmat.2013.09.011.
  • Xu T, Sun L. Dynamic in‐situ experimentation on nanomaterials at the atomic scale. Small. 2015;11(27):3247–3262. doi: 10.1002/smll.201403236.
  • Foldyna J, Foldyna V, Zeleňák M. Dispersion of carbon nanotubes for application in cement composites. Procedia Eng. 2016;149:94–99. doi: 10.1016/j.proeng.2016.06.643.
  • Deb PS, Khan MNN, Sarker PK, et al. Nanomechanical characterization of ambient-cured fly ash geopolymers containing nanosilica. J Sustain Cement Based Mater. 2022;11(3):164–174. doi: 10.1080/21650373.2021.1913658.
  • Shan YH, Tian DC, Zhao JS, et al. High-speed nano-indentation clustering analysis and mineral phase identification of cementitious materials. J Build Mater. 2023;26(05):563–570. Available from: http://kns.cnki.net/kcms/detail/31.1764.TU.20220727.1000.008.html
  • Li WN, Li Y, Li J, et al. Mechanical properties of carbon nanotube-modified cement-based composites. Concrete. 2022;394(08):97–101.
  • Qi R, Tian W, Wang F, et al. Influence of carbon nanotubes with different diameters on the mechanical properties of cement-based specimens. Bull Chin Ceram Soc. 2019;38(03):653–658. doi: 10.16552/j.cnki.issn1001-1625.2019.03.011.
  • Zhu JP, Zhang SJ, Gao F, et al. Influence of CNTs@SiO2 core-shell structure nanowires on the mechanical properties and microstructure of cement. Mater Guide. 2023;37(16):129–134. http://kns.cnki.net/kcms/detail/50.1078.tb.20230217.1356.005.html
  • Sun JL, Zou XD, Niu ZQ. Study on the mechanical properties of graphene oxide and functionalized carbon nanotube reinforced cement-based materials. Highway. 2022;67(09):365–373.
  • Tyson BM, Abu Al-Rub RK, Yazdanbakhsh A, et al. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J Mater Civ Eng. 2011;23(7):1028–1035. doi: 10.1061/(ASCE)MT.1943-5533.0000266.
  • Cui HZ, Yang SQ, Memon SA. Development of carbon nanotube modified cement paste with microencapsulated phase-change material for structural–functional integrated application. Int J Mol Sci. 2015;16(4):8027–8039. doi: 10.3390/ijms16048027.
  • Gao F, Tian W, Wang Z, et al. Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials. Constr Build Mater. 2020;260:120452. doi: 10.1016/j.conbuildmat.2020.120452.
  • Bagherzadeh F, Shafighfard T. Ensemble machine learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites. Case Stud Constr Mater. 2022;17:e01537. doi: 10.1016/j.cscm.2022.e01537.
  • Alexa-Stratulat SM, Stoian G, Ghemeş IA, et al. Effect of a new multi-walled CNT (MWCNT) type on the strength and elastic properties of cement-based mortar. Coatings. 2023;13(3):492. doi: 10.3390/coatings13030492.
  • Wei J. Preparation and properties of carbon nanotube-modified cement-based grouting materials. Funct Mater. 2022;53(08):8180–8185.
  • Cheng MY, Zeng Y, Yang H. Preparation and grouting performance of carbon nanotube-reinforced cement-based grouting materials. Funct Mater. 2020;51(11):11207–11213.
  • Tragazikis IK, Dalla PT, Exarchos DA, et al. Nondestructive evaluation of the mechanical behavior of cement-based nanocomposites under bending. Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2015. SPIE, 2015, 9436: 113–119. doi: 10.1117/12.2085508.
  • Li Y, Li H, Jin C, et al. The study of the effect of carbon nanotubes on the compressive strength of cement-based materials based on machine learning. Constr Build Mater. 2022;358:129435. doi: 10.1016/j.conbuildmat.2022.129435.
  • Bhatrola K, Kothiyal NC. Comparative study of physico‐mechanical performance of PPC mortar incorporated 1D/2D functionalized nanomaterials. Int J Applied Ceramic Tech. 2023;20(4):2478–2498. doi: 10.1111/ijac.14372.
  • Shi T, Liu Y, Hu Z, et al. Deformation performance and fracture toughness of carbon Nanofiber-Modified cement-based materials. ACI Mater J. 2022;119(5):119–128.
  • Li SS. Research on early shrinkage and crack resistance of carbon nanotubes reinforced cement composites. Zhejiang University of Technology, 2018.
  • Du M, Jing H, Gao Y, et al. Carbon nanomaterials enhanced cement-based composites: advances and challenges. Nanotechnol Rev. 2020;9(1):115–135. doi: 10.1515/ntrev-2020-0011.
  • Wang ZX, Mei JP, Liao YS, et al. Study on durability of nano SiO2 and VAE composite modified cement-based materials. J Build Mater. 2023;26(06):687–696. Available from: http://kns.cnki.net/kcms/detail/31.1764.TU.20221014.1633.020.html
  • Herath C, Gunasekara C, Law DW, et al. Long term creep and shrinkage of nano silica modified high volume fly ash concrete. J Sustain Cement Based Mater. 2022;11(3):202–222. doi: 10.1080/21650373.2021.1913660.
  • Liu JP, Liu YJ, Shi L, et al. Combined erosion and erosion of chloride-sulfate salt on cement-based materials. J Build Mater. 2016;19(06):993–997.
  • Zhu JQ, Deng M, Ma HZ, et al. Autogenous shrinkage and drying shrinkage of cement slurry in the early stage. J Nanj Univ Technol (Nat Sci Ed). 2007;(03):30–33.
  • Xiao H. Study on self-shrinkage performance of carbon nanomaterials cement-based composites. Dalian University of Technology, 2018.
  • Li WW, Ji WM, Wang YC, et al. Investigation on the mechanical properties of a cement-based material containing carbon nanotube under drying and freeze-thaw conditions. Mater (Basel). 2015;8(12):8780–8792. doi: 10.3390/ma8125491.
  • Wang B, Han Y, Zhang T. Reinforcement of surface-modified multi-walled carbon nanotubes on cement-based composites. Adv Cem Res. 2014;26(2):77–84. doi: 10.1680/adcr.12.00074.
  • Zhang P, Su J, Guo J, et al. Influence of carbon nanotube on properties of concrete: a review. Constr Build Mater. 2023;369:130388. doi: 10.1016/j.conbuildmat.2023.130388.
  • Hamada H, Shi J, Yousif ST, et al. Use of nano-silica in cement-based materials–a comprehensive review. J Sustain Cement Based Mater. 2023;12(10):1286–1306. doi: 10.1080/21650373.2023.2214146.
  • Wang B, Pang B. Properties improvement of multiwall carbon nanotubes-reinforced cement-based composites. J Compos Mater. 2020;54(18):2379–2387. doi: 10.1177/0021998319896835.
  • Tafesse M, Kim HK. The role of carbon nanotube on hydration kinetics and shrinkage of cement composite. Compos Part B Eng. 2019;169:55–64. doi: 10.1016/j.compositesb.2019.04.004.
  • Blandine F, Habermehi-Cwirzen K, Cwirzen A. Contribution of CNTs/CNFs morphology to the reduction of autogenous shrinkage of Portland cement paste. Front Struct Civ Eng. 2016;10(2):224–235. doi: 10.1007/s11709-016-0331-4.
  • Wang B, Xiao H, Zhang T. Autogenous shrinkage property of high-performance multi-walled cement-based carbon nanotubes composites. J Nanosci Nanotechnol. 2018;18(10):6894–6904. doi: 10.1166/jnn.2018.15509.
  • Liang XX. The mechanical and autogenous shrinkage properties of carbon nanotubes/mineral admixture cement-based composites. Dalian University of Technology, 2020. doi: 10.26991/d.cnki.gdllu.2020.002250.
  • Artamonova OV, Slavcheva GS, Shvedova MA. Effectiveness of nanotubular additives in the modification of cement systems. Inorg Mater. 2020;56(1):105–110. doi: 10.1134/S0020168520010021.
  • Liu J, Suh H, Jee H, et al. Synergistic effect of carbon nanotube/TiO2 nanotube multi-scale reinforcement on the mechanical properties and hydration process of Portland cement paste. Constr Build Mater. 2021;293:123447. doi: 10.1016/j.conbuildmat.2021.123447.
  • Mao Y, Liu J, Shi C. Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: a review. J Cleaner Prod. 2021;295:126435. doi: 10.1016/j.jclepro.2021.126435.
  • Lagier F, Dejenlis N, Benboudjema F, et al. Drying shrinkage of cement-based materials: effects of drying rate and aggregate restrain. Proceedings of Poromechanics IV-Fourth Biot Conference on Poromechanics, New York. 2009.
  • Nesvetaev G, Koryanova Y, Zhilnikova T. On effect of superplasticizers and mineral additives on shrinkage of hardened cement paste and concrete. Matec web of conferences. EDP Sciences, 2018. 196: 04018. doi: 10.1051/matecconf/201819604018.
  • Lee H, Jeong S, Park S, et al. Enhanced mechanical and heating performance of multi-walled carbon nanotube-cement composites fabricated using different mixing methods. Compos Struct. 2019;225:111072. doi: 10.1016/j.compstruct.2019.111072.
  • Kim GM, Park SM, Ryu GU, et al. Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cem Concr Compos. 2017;82:165–175. doi: 10.1016/j.cemconcomp.2017.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.