56
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermodynamic investigation of the formation mechanism of thaumasite in cement-ground limestone cementitious materials under sulfate attack

, &

References

  • Rahman M, Bassuoni M. Thaumasite sulfate attack on concrete: mechanisms, influential factors and mitigation. Constr Build Mater. 2014;73:652–662. doi: 10.1016/j.conbuildmat.2014.09.034.
  • Bensted J. Thaumasite-direct, woodfordite and other possible formation routes. Cem Concr Compos. 2003;25(8):873–877.
  • Purnell P, Francis OJ, Page CL. Formation of thaumasite in synthetic cement mineral slurries. Cem Concr Compos. 2003;25(8):857–860. doi: 10.1016/S0958-9465(03)00112-4.
  • Köhler S, Heinz D, Urbonas L. Effect of ettringite on thaumasite formation. Cem Concr Res. 2006;36(4):697–706. doi: 10.1016/j.cemconres.2005.11.006.
  • Bellmann F, Stark J. The role of calcium hydroxide in the formation of thaumasite. Cem Concr Res. 2008;38(10):1154–1161. doi: 10.1016/j.cemconres.2008.04.005.
  • Galan F, Steindl R, Grengg C. On the hydration of ternesite and the formation of thaumasite. Cem Concr Res. 2023;172:107212.
  • Dvorak K, Fridrichova M, Gazdic D. Study of formation of thaumasite on hydration of ternesite clinker. In: Proceedings of the 15th International Conference on Cement Chemistry. Prague; Czech Republic, 2019.
  • Skaropulou A. Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cem Concr Comp. 2013;37:267–275.
  • Hossack AM, Thomas M. Varying fly ash and slag contents in Portland limestone cement mortars exposed to external sulfates. Constr Build Mater. 2015;78:333–341.
  • Tiburzi NB, Garcia J, Drimalas T. Sulfate resistance of Portland-limestone cement concrete systems: linking laboratory and field performances. Constr Build Mater. 2020;250:118750.
  • Xiao J, Meng Q, Ma B, et al. Thermodynamic analysis of the formation of carbonsulfurite in cement-based materials. J Build Mater. 2015;18(2):263–268.
  • Luo YL, Zhou S, Wang C. Effects of cations in sulfate on the thaumasite form of sulfate attack of cementitious materials. Constr Build Mater. 2019;229:116865.
  • Hossack AM, Thomas M. The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na2SO4 solution. Cem Concr Res. 2015;73:136–142.
  • Song YM, Zhou SL, Wang ZJ. Mechanism of thaumasite formation in concrete. J Wuhan Univ Technol. 2017;32(4):893–897.
  • Tsivils S, Kakali G, Skaropoulou A. Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar. Cem Concr Comp. 2003;25(8):969–976.
  • Skaropoulou A, Tsivils S, Kakali G. Thaumasite form of sulfate attack in limestone cement mortars: a study on long term efficiency of mineral admixtures. Constr Build Mater. 2009;23(6):2338–2345.
  • Thomas S, Barbara L, Michael R, et al. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem Concr Res. 2009;39:1111–1121.
  • Martinez S, Blanco MT, Rapazote J. Thaumasite formation in sugary solutions: effect of temperature and sucrose concentration. Constr Build Mater. 2011;25(1):21–29.
  • Zeng QP, Wang C, Luo YL. Effect of temperatures on TSA in cement mortars under electrical field. Constr Build Mater. 2018;162:88–95.
  • Irassar EF, Bonavetti VL, Trezza MA. Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20 °C. Cem Concr Comp. 2005;27(1):77–84.
  • Gao X, Ma B, Yang Y. Sulfate attack of cement-based material with limestone filler exposed to different environments. J Mater Eng Perform. 2008;17(4):543–549.
  • Sotiriadis K, Mroz R. Simulation of thaumasite sulfate attack on Portland cement mixtures using synthesized cement phases. J Mater Civil Eng. 2019;31(2):04018393.
  • Diamond S. Thaumasite in orange county, Southern California: an inquiry into the effect of low temperature. Cem Concr Comp. 2003;25(8):1161–1164.
  • Rabahi-Touloum N, Brara A. The occurrence of thaumasite in newly built concrete constructions under the semi-arid climate of northeastern Algeria. Mater Struct. 2021;54(2):69. doi: 10.1617/s11527-021-01674-1.
  • Wu M, Zhang YS, Ji YS. A comparable study on the deterioration of ground limestone blended cement under sodium sulfate and magnesium sulfate attack at a low temperature. Constr Build Mater. 2020;243:118279.
  • Liu ZQ, Deng DH, De SG. The effect of MgSO4 on thaumasite formation. Cem Concr Comp. 2013;35(1):102–108.
  • Sotiriadis K, Hlobil M, Viani A. Physical–chemical mechanical quantitative assessment of the microstructural evolution in Portland-limestone cement pastes exposed to magnesium sulfate attack at low temperature. Cem Concr Res. 2021;149:106566.
  • Bellman F, Stark J. Prevention of thaumasite formation in concrete exposed to sulphate attack. Cem Concr Res. 2007;37(8):1215–1222.
  • Sotiriadis K, Macova P, Mazur AS. Long-term thaumasite sulfate attack on Portland-limestone cement concrete: a multi-technique analytical approach for assessing phase assemblage. Cem Concr Res. 2020;130:105995.
  • Baldermann A, Rezvani M, Proske T. Effect of very high limestone content and quality on the sulfate resistance of blended cements. Constr Build Mater. 2018;188:1065–1076.
  • Ling K, Lu D, Xu J. Sulfate resistance of cement mortar containing dolomite powder. J Chin Ceram Soc. 2018;46(2):214–219.
  • Fu X. Physical chemistry. Beijing, China: CHEP; 2006.
  • Li M. Sub-zero temperature performance and thermodynamic modelling of hydration of sulphoaluminate cement with antifreezing agent [dissertation]. Harbin: Harbin Institute of Technology; 2020.
  • Mostafa AG, Eakman JM, Yarbro SL. Prediction of standard heats and Gibbs free energies of formation of solid chloride binding. Cem Concr Res. 1998;28(12):1713–1723.
  • Silva RJ, Bidoglio G, Rand MH. Chemical thermodynamics. Vol. 2. London: Elsevier; 1995. p. 1–5.
  • Gmehling J. Chemical thermodynamics for process simulation. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2019.
  • Zhou J, Chen L, Zheng K, et al. Formulating Portland cement-reactive alumina blend through thermodynamic modeling to prevent the alkali–silica reaction. J Am Ceram Soc. 2022;105(2):1533–1547. doi: 10.1111/jace.18151.
  • Congyun L, Jia X, Conghao W. Thermodynamic study on the mutual influence of CaSO4·2H2O and CaCO3 in the reactions with C3A. J Build Eng. 2024;86:108641.
  • Lothenbach B, Kulik D, Matschei T. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem Concr Res. 2019;115:472–506.
  • Guo X, Son Y, Wu G. Thermodynamic analysis of oilwell set-cement degradation under carbon dioxide sequestration condition. J Chin Cream Soc. 2020;48:1233–1239.
  • Yaoling L. An electrical field accelerate the behavior and mechanism of the thaumasite form of sulfate attack in cement based materials [dissertation]. Chongqing: Chongqing University; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.