78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanical performance and permeability of low-carbon printable concrete

, , , , , , , & show all

References

  • Lu B, Weng Y, Li M, et al. A systematical review of 3D printable cementitious materials. Constr Build Mater. 2019;207:477–490. doi: 10.1016/j.conbuildmat.2019.02.144.
  • Ma G, Li Z, Wang L, et al. Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Mater Lett. 2019;235:144–147. doi: 10.1016/j.matlet.2018.09.159.
  • Kedir F, Hall DM. Resource efficiency in industrialized housing construction–a systematic review of current performance and future opportunities. J Cleaner Prod. 2021;286:125443. doi: 10.1016/j.jclepro.2020.125443.
  • Hossain MA, Zhumabekova A, Paul SC, et al. A review of 3D printing in construction and its impact on the labor market. Sustainability. 2020;12(20):8492. doi: 10.3390/su12208492.
  • Li VC, Bos FP, Yu K, et al. On the emergence of 3D printable engineered, strain hardening cementitious composites (ECC/SHCC). Cem Concr Res. 2020;132:106038. doi: 10.1016/j.cemconres.2020.106038.
  • Panda B, Tay YWD, Paul SC, et al. Current challenges and future potential of 3D concrete printing: aktuelle herausforderungen und zukunftspotenziale des 3D‐druckens bei beton. Materialwissenschaft Werkst. 2018;49(5):666–673. doi: 10.1002/mawe.201700279.
  • Paul SC, Van Rooyen AS, van Zijl GP, et al. Properties of cement-based composites using nanoparticles: a comprehensive review. Constr Build Mater. 2018;189:1019–1034. doi: 10.1016/j.conbuildmat.2018.09.062.
  • Paul SC, Tay YWD, Panda B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch Civ Mech Eng. 2018;18(1):311–319. doi: 10.1016/j.acme.2017.02.008.
  • Mohan MK, Rahul A, Van Tittelboom K, et al. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cem Concr Res. 2021;139:106258. doi: 10.1016/j.cemconres.2020.106258.
  • Tinoco MP, de Mendonça ÉM, Fernandez LIC, et al. Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: a systematic literature review. J Build Eng. 2022;52:104456. doi: 10.1016/j.jobe.2022.104456.
  • Hambach M, Rutzen M, Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. In: Sanjayan JG, Nazari A, Nematollahi B, editors. 3D concrete printing technology. Amsterdam: Elsevier; 2019. p. 73–113.
  • Pasupathy K, Ramakrishnan S, Sanjayan J. 3D concrete printing of eco-friendly geopolymer containing brick waste. Cem Concr Compos. 2023;138:104943. doi: 10.1016/j.cemconcomp.2023.104943.
  • Menna C, Mata-Falcón J, Bos FP, et al. Opportunities and challenges for structural engineering of digitally fabricated concrete. Cem Concr Res. 2020;133:106079. doi: 10.1016/j.cemconres.2020.106079.
  • Souza MT, Ferreira IM, de Moraes EG, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J Build Eng. 2020;32:101833. doi: 10.1016/j.jobe.2020.101833.
  • Han Y, Yang Z, Ding T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete. J Cleaner Prod. 2021;278:123884. doi: 10.1016/j.jclepro.2020.123884.
  • Mechtcherine V, Nerella VN, Will F, et al. Large-scale digital concrete construction–CONPrint3D concept for on-site, monolithic 3D-printing. Autom Constr. 2019;107:102933. doi: 10.1016/j.autcon.2019.102933.
  • Panda B, Tan MJ. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Mater Lett. 2019;237:348–351. doi: 10.1016/j.matlet.2018.11.131.
  • Liu Z, Li M, Weng Y, et al. Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing. Constr Build Mater. 2019;198:245–255. doi: 10.1016/j.conbuildmat.2018.11.252.
  • Liu X, Li Q, Wang L, et al. Systematic approach for printability evaluation and mechanical property optimization of spray-based 3D printed mortar. Cem Concr Compos. 2022;133:104688. doi: 10.1016/j.cemconcomp.2022.104688.
  • Arunothayan AR, Nematollahi B, Ranade R, et al. Digital fabrication of eco-friendly ultra-high performance fiber-reinforced concrete. Cem Concr Compos. 2022;125:104281. doi: 10.1016/j.cemconcomp.2021.104281.
  • Chaves Figueiredo S, Romero Rodríguez C, Y. Ahmed Z, et al. Mechanical behavior of printed strain hardening cementitious composites. Materials. 2020;13(10):2253. doi: 10.3390/ma13102253.
  • Pham L, Tran P, Sanjayan J. Steel fibres reinforced 3D printed concrete: influence of fibre sizes on mechanical performance. Constr Build Mater. 2020;250:118785. doi: 10.1016/j.conbuildmat.2020.118785.
  • Moelich GM, Kruger J, Combrinck R. Plastic shrinkage cracking in 3D printed concrete. Comp B Eng. 2020;200:108313. doi: 10.1016/j.compositesb.2020.108313.
  • Kazemian A, Yuan X, Cochran E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater. 2017;145:639–647. doi: 10.1016/j.conbuildmat.2017.04.015.
  • Le TT, Austin SA, Lim S, et al. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 2012;42(3):558–566. doi: 10.1016/j.cemconres.2011.12.003.
  • Rahul A, Santhanam M, Meena H, et al. Mechanical characterization of 3D printable concrete. Constr Build Mater. 2019;227:116710. doi: 10.1016/j.conbuildmat.2019.116710.
  • Lee H, Kim J-HJ, Moon J-H, et al. Evaluation of the mechanical properties of a 3D-printed mortar. Materials. 2019;12(24):4104. doi: 10.3390/ma12244104.
  • Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018;162:613–627. doi: 10.1016/j.conbuildmat.2017.12.051.
  • Panda B, Paul SC, Tan MJ. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett. 2017;209:146–149. doi: 10.1016/j.matlet.2017.07.123.
  • Bran Anleu PC. Quantitative micro XRF mapping of chlorides: possibilities, limitations, and applications, from cement to digital concrete [Ph.D. thesis]. ETH Zurich; 2018. https://doi.org/10.3929/ethz-b-000328911.
  • Cui W, Wang T, Chen X, et al. Study of 3D printed concrete with low-carbon cementitious materials based on its rheological properties and mechanical performances. J Sustain Cem Based Mater. 2023;12(7):832–841. doi: 10.1080/21650373.2023.2189172.
  • Le TT, Austin SA, Lim S, et al. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221–1232. doi: 10.1617/s11527-012-9828-z.
  • Ding T, Xiao J, Zou S, et al. Hardened properties of layered 3D printed concrete with recycled sand. Cem Concr Compos. 2020;113:103724. doi: 10.1016/j.cemconcomp.2020.103724.
  • Nodehi M, Aguayo F, Nodehi SE, et al. Durability properties of 3D printed concrete (3DPC). Autom Constr. 2022;142:104479. doi: 10.1016/j.autcon.2022.104479.
  • Zhang Y, Zhang Y, Yang L, et al. Hardened properties and durability of large-scale 3D printed cement-based materials. Mater Struct. 2021;54(1):1–14. doi: 10.1617/s11527-021-01632-x.
  • Marchon D, Kawashima S, Bessaies-Bey H, et al. Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem Concr Res. 2018;112:96–110. doi: 10.1016/j.cemconres.2018.05.014.