8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Early hydration of hot-stuffy steel slag-cement composite pastes: isothermal calorimetry and phase evolution

, &

References

  • Gao D, Wang F-P, Wang Y-T, et al. Sustainable utilization of steel slag from traditional industry and agriculture to catalysis. Sustainability. 2020;12(21):9295. doi: 10.3390/su12219295.
  • Li G, Liu P, Chao S, et al. The mineral phase evolution characteristics and hydration activity enhancement mechanism of steel slag under NaOH alkaline excitation. J Alloys Compd. 2024;978:173524. doi: 10.1016/j.jallcom.2024.173524.
  • World Steel in Figures 2021 Now available - worldsteel.org. n.d. https://worldsteel.org/media-centre/press-releases/2021/world-steel-in-figures-2021-now-available/. (accessed March 13, 2024).
  • Shu K, Sasaki K. Occurrence of steel converter slag and its high value-added conversion for environmental restoration in China: a review. J Cleaner Prod. 2022;373:133876. doi: 10.1016/j.jclepro.2022.133876.
  • Pan S-Y, Adhikari R, Chen Y-H, et al. Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J Cleaner Prod. 2016;137:617–631. doi: 10.1016/j.jclepro.2016.07.112.
  • Zhuang S, Wang Q, Luo T. Modification of ultrafine blast furnace slag with steel slag as a novel high-quality mineral admixture to prepare high-strength concrete. J Build Engin. 2023;71:106501. doi: 10.1016/j.jobe.2023.106501.
  • Gao W, Zhou W, Lyu X, et al. Comprehensive utilization of steel slag: a review. Powder Technol. 2023;422:118449. doi: 10.1016/j.powtec.2023.118449.
  • Guo J, Bao Y, Wang M. Steel slag in China: treatment, recycling, and management. Waste Manag. 2018;78:318–330. doi: 10.1016/j.wasman.2018.04.045.
  • Kumar P, Satish Kumar D, Marutiram K, et al. Pilot-scale steam aging of steel slags. Waste Manag Res. 2017;35(6):602–609. doi: 10.1177/0734242X17694247.
  • Ouyang D, Yi CB, Xu WT, et al. Hydration characteristics and cementious properties of pyrolytic steel slag. AMR. 2011;194–196:2119–2126. doi: 10.4028/www.scientific.net/AMR.194-196.2119.
  • Ji X, Hou J, Liu Y, et al. Effect of CaO-FeO-MnO system solid solution on the hydration activity of tri-component f-CaO in steel slag. Constr Build Mater. 2019;225:476–484. doi: 10.1016/j.conbuildmat.2019.07.151.
  • Nakase K, Matsui A, Kikuchi N, et al. Fundamental research on a rational steelmaking slag recycling system by phosphorus separation and collection. J Manufacturing Sci Prod. 2013;13(1-2). doi: 10.1515/jmsp-2012-0038.
  • Jiang Q, Liu W, Wu S. Analysis on factors affecting moisture stability of steel slag asphalt concrete using grey correlation method. J Cleaner Prod. 2023;397:136490. doi: 10.1016/j.jclepro.2023.136490.
  • Wang X, Wei X, Ni W. Impacts of hydration degree of steel slag on its subsequent CO2 capture behaviors and mechanical performances of prepared building materials. Constr Build Mater. 2024;416:135075. doi: 10.1016/j.conbuildmat.2024.135075.
  • Wang Q, Feng JJ, Yan PY. An explanation for the negative effect of elevated temperature at early ages on the late-age strength of concrete. J Mater Sci. 2011;46(22):7279–7288. doi: 10.1007/s10853-011-5689-z.
  • Zhao Z, Wang Z, Wu S, et al. Road performance, VOCs emission and economic benefit evaluation of asphalt mixture by incorporating steel slag and SBS/CR composite modified asphalt. Case Stud Constr Mater. 2023;18:e01929. doi: 10.1016/j.cscm.2023.e01929.
  • Liu J, Wang W, Wang Y, et al. Towards the sustainable utilization of steel slag in asphalt pavements: a case study of moisture resistance and life cycle assessment. Case Stud Constr Mater. 2023;18:e01722. doi: 10.1016/j.cscm.2022.e01722.
  • Jha S, Banerjee S, Ghosh S, et al. Eisenia fetida-driven vermitechnology for the eco-friendly transformation of steel waste slag into organic amendment: an insight through microbial diversity and multi-model approach. Environ Res. 2024;251(Pt 1):118636. doi: 10.1016/j.envres.2024.118636.
  • Zhao Y, Wang L, Zhu L, et al. Removal of p-Nitrophenol from simulated sewage using steel slag: capability and mechanism. Environ Res. 2022;212(Pt D):113450. doi: 10.1016/j.envres.2022.113450.
  • Pang L, Liao S, Wang D, et al. Influence of steel slag fineness on the hydration of cement-steel slag composite pastes. J Build Engin. 2022;57:104866. doi: 10.1016/j.jobe.2022.104866.
  • Wang Q, Yan P, Yang J, et al. Influence of steel slag on mechanical properties and durability of concrete. Constr Build Mater. 2013;47:1414–1420. doi: 10.1016/j.conbuildmat.2013.06.044.
  • Luo T, Wang X, Zhuang S. Value-added utilization of steel slag as a hydration heat controlling material to prepare sustainable and green mass concrete. Case Stud Constr Mater. 2023;19:e02619. doi: 10.1016/j.cscm.2023.e02619.
  • Gupta T, Sachdeva SN. Laboratory investigation and modeling of concrete pavements containing AOD steel slag. Cem Concr Res. 2019;124:105808. doi: 10.1016/j.cemconres.2019.105808.
  • Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem Concr Res. 2002;32(3):459–462. doi: 10.1016/S0008-8846(01)00707-4.
  • Li J, Yu Q, Wei J, et al. Structural characteristics and hydration kinetics of modified steel slag. Cem Concr Res. 2011;41(3):324–329. doi: 10.1016/j.cemconres.2010.11.018.
  • Luxán MP, Sotolongo R, Dorrego F, et al. Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace. Cem Concr Res. 2000;30(4):517–519. doi: 10.1016/S0008-8846(99)00253-7.
  • Wang Q, Yan P, Feng J. A discussion on improving hydration activity of steel slag by altering its mineral compositions. J Hazard Mater. 2011;186(2–3):1070–1075. doi: 10.1016/j.jhazmat.2010.11.109.
  • Wang Q, Shi M, Zhang Z. Hydration properties of steel slag under autoclaved condition. J Therm Anal Calorim. 2015;120(2):1241–1248. doi: 10.1007/s10973-015-4397-3.
  • Wang Q, Yan P. Early hydration characteristics and paste structure of complex binding material containing high-volume steel slag. J. Chin. Ceram. Soc. 2008;36:1406–1411. doi: 10.3321/j.issn:0454-5648.2008.10.011
  • Iacobescu RI, Angelopoulos GN, Jones PT, et al. Ladle metallurgy stainless steel slag as a raw material in ordinary Portland cement production: a possibility for industrial symbiosis. J Cleaner Prod. 2016;112:872–881. doi: 10.1016/j.jclepro.2015.06.006.
  • Zhuang S, Wang Q, Luo T. A quantitative method to assess and predict the exothermic behavior of steel slag blended cement. Cem Concr Res. 2024;175:107373. doi: 10.1016/j.cemconres.2023.107373.
  • Adolfsson D, Robinson R, Engström F, et al. Influence of mineralogy on the hydraulic properties of ladle slag. Cem Concr Res. 2011;41(8):865–871. doi: 10.1016/j.cemconres.2011.04.003.
  • Wang Q, Yang J, Yan P. Cementitious properties of super-fine steel slag. Powder Technol. 2013;245:35–39. doi: 10.1016/j.powtec.2013.04.016.
  • Jiao W, Sha A, Liu Z, et al. Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements. J Cleaner Prod. 2020;261:121197. doi: 10.1016/j.jclepro.2020.121197.
  • Chen Z, Gong Z, Jiao Y, et al. Moisture stability improvement of asphalt mixture considering the surface characteristics of steel slag coarse aggregate. Constr Build Mater. 2020;251:118987. doi: 10.1016/j.conbuildmat.2020.118987.
  • Xiao Z, Chen M, Wu S, et al. Moisture susceptibility evaluation of asphalt mixtures containing steel slag powder as filler. Materials. 2019;12(19):3211. doi: 10.3390/ma12193211.
  • Zhuang S, Wang Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem Concr Res. 2021;140:106283. doi: 10.1016/j.cemconres.2020.106283.
  • Zhuang S, Wang Q, Luo T. Effect of C12A7 in steel slag on the early-age hydration of cement. Cem Concr Res. 2022;162:107010. doi: 10.1016/j.cemconres.2022.107010.
  • You N, Li B, Cao R, et al. The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar. Constr Build Mater. 2019;227:116614. doi: 10.1016/j.conbuildmat.2019.07.340.
  • Huo B, Li B, Chen C, et al. Surface etching and early age hydration mechanisms of steel slag powder with formic acid. Constr Build Mater. 2021;280:122500. doi: 10.1016/j.conbuildmat.2021.122500.
  • Akın Altun İ, Yılmaz İ. Study on steel furnace slags with high MgO as additive in Portland cement. Cem Concr Res. 2002;32(8):1247–1249. doi: 10.1016/S0008-8846(02)00763-9.
  • Xuequan W, Hong Z, Xinkai H, et al. Study on steel slag and fly ash composite Portland cement. Cem Concr Res. 1999;29(7):1103–1106. doi: 10.1016/S0008-8846(98)00244-0.
  • Kourounis S, Tsivilis S, Tsakiridis PE, et al. Properties and hydration of blended cements with steelmaking slag. Cem Concr Res. 2007;37(6):815–822. doi: 10.1016/j.cemconres.2007.03.008.
  • Han F, Zhang Z, Wang D, et al. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochim Acta. 2015;605:43–51. doi: 10.1016/j.tca.2015.02.018.
  • Wang Q, Yan P, Han S. The influence of steel slag on the hydration of cement during the hydration process of complex binder. Sci. China Technol. Sci. 2011;54(2):388–394. doi: 10.1007/s11431-010-4204-0.
  • Zhang Z, Han F, Yan P. Modelling the dissolution and precipitation process of the early hydration of C3S. Cem Concr Res. 2020;136:106174. doi: 10.1016/j.cemconres.2020.106174.
  • Li X, Scrivener KL. Impact of ZnO on C3S hydration and C-S-H morphology at early ages. Cem Concr Res. 2022;154:106734. doi: 10.1016/j.cemconres.2022.106734.
  • Han K, Guo T, Shu X, et al. Insight into the role of early C3A hydration in structural build-up of cement paste. Cem Concr Res. 2024;175:107354. doi: 10.1016/j.cemconres.2023.107354.
  • Zhang T, Yu Q, Wei J, et al. Investigation on mechanical properties, durability and micro-structural development of steel slag blended cements. J Therm Anal Calorim. 2012;110(2):633–639. doi: 10.1007/s10973-011-1853-6.
  • Mouret M, Bascoul A, Escadeillas G. Study of the degree of hydration of concrete by means of image analysis and chemically bound water. Adv. Cem. Based Mater. 1997;6(3):109–115. doi: 10.1016/S1065-7355(97)90017-1.
  • Gómez-Zamorano LY, Escalante-García JI. Effect of curing temperature on the nonevaporable water in Portland cement blended with geothermal silica waste. Cem Concr Compos. 2010;32(8):603–610. doi: 10.1016/j.cemconcomp.2010.07.004.
  • Odler I. The BET-specific surface area of hydrated Portland cement and related materials. Cem Concr Res. 2003;33(12):2049–2056. doi: 10.1016/S0008-8846(03)00225-4.
  • Thomas JJ, Jennings HM, Allen AJ. The surface area of cement paste as measured by neutron scattering: evidence for two C-S-H morphologies. Cem Concr Res. 1998;28(6):897–905. doi: 10.1016/S0008-8846(98)00049-0.
  • Scrivener K, Ouzia A, Juilland P, et al. Advances in understanding cement hydration mechanisms. Cem Concr Res. 2019;124:105823. doi: 10.1016/j.cemconres.2019.105823.
  • Nguyen-Tuan L, Becker F, Kleiner F, et al. Quantitative study on growth and porosity of C-S-H structures: experiments and simulations. Cem Concr Res. 2023;174:107294. doi: 10.1016/j.cemconres.2023.107294.
  • Zhang T, Yu Q, Wei J, et al. Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour Conserv Recycl. 2011;56(1):48–55. doi: 10.1016/j.resconrec.2011.09.003.
  • Zhang Z, Scherer GW, Bauer A. Morphology of cementitious material during early hydration. Cem Concr Res. 2018;107:85–100. doi: 10.1016/j.cemconres.2018.02.004.
  • Bellmann F, Scherer GW. Analysis of C-S-H growth rates in supersaturated conditions. Cem Concr Res. 2018;103:236–244. doi: 10.1016/j.cemconres.2017.05.007.
  • Schönlein M, Plank J. A TEM study on the very early crystallization of C-S-H in the presence of polycarboxylate superplasticizers: transformation from initial C-S-H globules to nanofoils. Cem Concr Res. 2018;106:33–39. doi: 10.1016/j.cemconres.2018.01.017.
  • Ouyang X, Koleva DA, Ye G, et al. Understanding the adhesion mechanisms between CSH and fillers. Cem Concr Res. 2017;100:275–283. doi: 10.1016/j.cemconres.2017.07.006.
  • Li W, Fan Y, Hong J, et al. Investigation on the early proceeding of cement hydration containing dispersed nano calcium silicate hydrated (CSH) seeds. Constr Build Mater. 2024;425:136039. doi: 10.1016/j.conbuildmat.2024.136039.
  • Fang K, Zhao J, Wang D, et al. Use of ladle furnace slag as supplementary cementitious material before and after modification by rapid air cooling: a comparative study of influence on the properties of blended cement paste. Constr Build Mater. 2022;314:125434. doi: 10.1016/j.conbuildmat.2021.125434.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.