30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insight into the performance of composite binder with high-volume steel slag, blast furnace slag and desulfurization gypsum

, , &

References

  • Zou F, Tan H, He X, et al. Effect of triisopropanolamine on compressive strength and hydration of steaming-cured cement-fly ash paste. Constr Build Mater. 2018;192:836–845. doi: 10.1016/j.conbuildmat.2018.10.087.
  • Liu T, Wei H, Zou D, et al. Utilization of waste cathode ray tube funnel glass for ultra-high performance concrete. J Clean Prod. 2020;249:119333. doi: 10.1016/j.jclepro.2019.119333.
  • Gu K, Chen B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. Constr Build Mater. 2020;231:117195. doi: 10.1016/j.conbuildmat.2019.117195.
  • Zhao J, Yan P, Wang D. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle. J Clean Prod. 2017;156:50–61. doi: 10.1016/j.jclepro.2017.04.029.
  • Guo J, Bao Y, Wang M. Steel slag in China: treatment, recycling, and management. Waste Manag. 2018;78:318–330. doi: 10.1016/j.wasman.2018.04.045.
  • Huang S, Peng B, Yang Z, et al. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans Nonferrous Met Soc China. 2009;19(1):241–248. doi: 10.1016/s1003-6326(08)60259-9.
  • Gutierrez J, Hong C, Lee B, et al. Effect of steel-making slag as a soil amendment on arsenic uptake by radish (Raphanus sativa L.) in an upland soil. Biol Fertil Soils. 2010;46(6):617–623. doi: 10.1007/s00374-010-0470-z.
  • Pang L, Liao S, Wang D, et al. Influence of steel slag fineness on the hydration of cement–steel slag composite pastes. J Build Eng. 2022;57:104866. doi: 10.1016/j.jobe.2022.104866.
  • Zhuang S, Wang Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem Concr Res. 2021;140:106283. doi: 10.1016/j.cemconres.2020.106283.
  • Hou J, Chen Z, Liu J. Hydration activity and expansibility model for the RO phase in steel slag. Metall Mater Trans B. 2020;51(4):1697–1704. doi: 10.1007/s11663-020-01847-3.
  • Li W, Cao M, Wang D, et al. Improving the hydration activity and volume stability of the RO phases in steel slag by combining alkali and wet carbonation treatments. Cem Concr Res. 2023;172:107236. doi: 10.1016/j.cemconres.2023.107236.
  • Gu X, Wang H, Zhu Z, et al. Synergistic effect and mechanism of lithium slag on mechanical properties and microstructure of steel slag–cement system. Constr Build Mater. 2023;396:131768. doi: 10.1016/j.conbuildmat.2023.131768.
  • Zhou M, Yan J, Fan J, et al. Insight to workability, compressive strength and microstructure of lithium slag–steel slag based cement under standard condition. J Build Eng. 2023;75:107076. doi: 10.1016/j.jobe.2023.107076.
  • Dai S, Zhu H, Zhang D, et al. Insights to compressive strength, impermeability and microstructure of micro-expansion steel slag cement under constraint conditions. Constr Build Mater. 2022;326:126540. doi: 10.1016/j.conbuildmat.2022.126540.
  • Brand A, Roesler J. Interfacial transition zone of cement composites with steel furnace slag aggregates. Cem Concr Compos. 2018;86:117–129. doi: 10.1016/j.cemconcomp.2017.11.012.
  • Pang B, Zhou Z, Cheng X, et al. ITZ properties of concrete with carbonated steel slag aggregate in salty freeze–thaw environment. Constr Build Mater. 2016;114:162–171. doi: 10.1016/j.conbuildmat.2016.03.168.
  • Liu Y, Zhang Z, Hou G, et al. Preparation of sustainable and green cement-based composite binders with high-volume steel slag powder and ultrafine blast furnace slag powder. J Clean Prod. 2021;289:125133. doi: 10.1016/j.jclepro.2020.125133.
  • Hu S, He Y, Lu L, et al. Effect of fine steel slag powder on the early hydration process of Portland cement. Mater Sci Ed. 2006;21(1):147–149. doi: 10.1007/BF02861494.
  • Wang Q, Yan P, Mi G. Effect of blended steel slag–GBFS mineral admixture on hydration and strength of cement. Constr Build Mater. 2012;35:8–14. doi: 10.1016/j.conbuildmat.2012.02.085.
  • Zhang S, Niu D, Wang Y, et al. Insight into mechanical properties and microstructure of concrete containing steel slag and ground-granulated blast-furnace slag. J Sustain Cem Based Mater. 2023;12(9):1169–1180. doi: 10.1080/21650373.2023.2180103.
  • Xu C, Ni W, Li K, et al. Activation mechanisms of three types of industrial by-product gypsums on steel slag-granulated blast furnace slag-based binders. Constr Build Mater. 2021;288:123111. doi: 10.1016/j.conbuildmat.2021.123111.
  • Li D, Ping H, Zhang K, et al. Preparation and hydration mechanism of composite cementitious materials containing steel slag, slag and desulfurization gypsum. Sci Technol Eng. 2023;23(6):2566–2558. doi: 10.12404/j.issn.1671-1815.2023.23.06.02558.
  • Hou X, Dong Y, Xue B, et al. Study on low heat steel slag and blast furnace slag Portland cement (I):cement performance with its proportion. Bull Chin Ceram Soc. 2014;33(10):2451–2460. doi: 10.16552/j.cnki.issn1001-1625.2014.10.016.
  • Xu C, Ni W, Li K, et al. Hydration mechanism and orthogonal optimisation of mix proportion for steel slag-slag-based clinker-free prefabricated concrete. Constr Build Mater. 2019;228:117036. doi: 10.1016/j.conbuildmat.2019.117036.
  • GB/T750-1992. Autoclave method for soundness of Portland cement, national standard of the People’s Republic of China. Beijing: State Administration for Market Regulation and Standardization Administration of China.
  • Zhang J, Scherer G. Comparison of methods for arresting hydration of cement. Cem Concr Res. 2011;41(10):1024–1036. doi: 10.1016/j.cemconres.2011.06.003.
  • GB/T1346-2011. Test methods for water requirement of normal consistency, setting time and soundness of the Portland cement, national standard of the People’s Republic of China. Beijing: State Administration for Market Regulation and Standardization Administration of China.
  • GB/T17671-2021. Test method of cement mortar strength(ISO method), national standard of the People’s Republic Of China. Beijing: State Administration for Market Regulation and Standardization Administration of China.
  • GB/T29417-2012. Standard test methods for drying shrinkage stress and cracking possibility of cement mortar and concrete, national standard of the People’s Republic Of China. Beijing: State Administration for Market Regulation and Standardization Administration of China.
  • Liao C, Zeng L, Shih K. Quantitative X-ray diffraction (QXRD) analysis for revealing thermal transformations of red mud. Chemosphere. 2015;131:171–177. doi: 10.1016/j.chemosphere.2015.03.034.
  • Wei Y, Yao W, Xing X, et al. Quantitative evaluation of hydrated cement modified by silica fume using QXRD, 27Al MAS NMR, TG-DSC and selective dissolution techniques. Constr Build Mater. 2012;36:925–932. doi: 10.1016/j.conbuildmat.2012.06.075.
  • Yasukawa K, Terashi Y, Nakayama A. Crystallinity analysis of glass-ceramics by the Rietveld method. J Am Ceram Soc. 1998;81(11):2978–2982. doi: 10.1111/j.1151-2916.1998.tb02723.x.
  • Bish D, Post J. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Miner. 1993;78(9):932–940. doi: 10.1016/0024-4937(93)90032-8.
  • Torre A, Bruque S, Aranda M. Rietveld quantitative amorphous content analysis. J Appl Crystallogr. 2001;34(2):196–202. doi: 10.1016/j.chemphyslip.2018.01.003.
  • Cheng X, Tian W, Yuan Q, et al. Effect of carbon dioxide mineralization curing on mechanical properties and microstructure of Portland cement–steel slag-granulated blast furnace slag ternary paste. Constr Build Mater. 2024;431:136553. doi: 10.1016/j.conbuildmat.2024.136553.
  • Wang Q, Su H, Li C, et al. Recycling of steel slag as an alkali activator for blast furnace slag: geopolymer preparation and its application in composite cement. Clean Techn Environ Policy. 2022;25(5):1617–1629. doi: 10.1007/s10098-022-02458-z.
  • Wang Q, Yan P, Han S. The influence of steel slag on the hydration of cement during the hydration process of complex binder. Sci China Technol Sci. 2011;54(2):388–394. doi: 10.1007/s11431-010-4204-0.
  • Wang J, Ren X, Cai Y, et al. Effect of direct electric curing on the mechanical properties, hydration process, and environmental benefits of cement–steel slag composite. Constr Build Mater. 2023;406:133382. doi: 10.1016/j.conbuildmat.2023.133382.
  • Liu Z, Ni W, Li Y, et al. The mechanism of hydration reaction of granulated blast furnace slag–steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials. J Build Eng. 2021;44:103289. doi: 10.1016/j.jobe.2021.103289.
  • Ji X, Wang Z, Zhang H, et al. Optimization design and characterization of slag cementitious composites containing carbide slag and desulfurized gypsum based on response surface methodology. J Build Eng. 2023;77:107441. doi: 10.1016/j.jobe.2023.107441.
  • Chitvoranund N, Winnefeld F, Hargis CW, et al. Synthesis and hydration of alite-calcium sulfoaluminate cement. Adv Cem Res. 2017;29(3):101–111. doi: 10.1680/jadcr.16.00071.
  • Mo L, Zhang F, Deng M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cem Concr Res. 2016;88:217–226. doi: 10.1016/j.cemconres.2016.05.013.
  • Tang C, Mu X, Ni W, et al. Study on effects of refining slag on properties and hydration of cemented solid waste-based backfill. Materials (Basel). 2022;15(23):8338. doi: 10.3390/ma15238338.
  • Zhao J, Wang D, Yan P. Design and experimental study of a ternary blended cement containing high volume steel slag and blast-furnace slag based on Fuller distribution model. Constr Build Mater. 2017;140:248–256. doi: 10.1016/j.conbuildmat.2017.02.119.
  • Wang Q, Yang J, Yan P. Cementitious properties of super-fine steel slag. Powder Technol. 2013;245:35–39. doi: 10.1016/j.powtec.2013.04.016.
  • Xiong X, Yang Z, Yan X, et al. Mechanical properties and microstructure of engineered cementitious composites with high volume steel slag and GGBFS. Constr Build Mater. 2023;398:132512. doi: 10.1016/j.conbuildmat.2023.132512.
  • Zhao J, Wang D, Yan P, et al. Self-cementitious property of steel slag powder blended with gypsum. Constr Build Mater. 2016;113:835–842. doi: 10.1016/j.conbuildmat.2016.03.102.
  • Zhao J, Li Z, Wang D, et al. Hydration superposition effect and mechanism of steel slag powder and granulated blast furnace slag powder. Constr Build Mater. 2023;366:130101. doi: 10.1016/j.conbuildmat.2022.130101.
  • Ji X, Hou J, Liu Y, et al. Effect of CaO–FeO–MnO system solid solution on the hydration activity of tri-component f-CaO in steel slag. Constr Build Mater. 2019;225:476–484. doi: 10.1016/j.conbuildmat.2019.07.151.
  • Chen Z, Wu S, Xiao Y, et al. Effect of hydration and silicone resin on basic oxygen furnace slag and its asphalt mixture. J Clean Prod. 2016;112:392–400. doi: 10.1016/j.jclepro.2015.09.041.
  • Zhang T, Liu F, Wang J, et al. Recent development of steel slag stability and activating activity. Bull Chin Ceram Soc. 2007;26(5):980–984. doi: 10.3969/j.issn.1001-1625.2007.05.028.
  • Yildirim I. Long-term and accelerated swelling of steel slag-glass powder and steel slag-fly ash mixtures as sustainable geo-materials. J Clean Prod. 2024;467:142768. doi: 10.1016/j.jclepro.2024.142768.
  • Zhu G, Wang Y, Hang K, et al. The inhibitory effect of fine mineral admixture on the expansibility of steel slag aggregate. For Eng. 2019;35(1):87–92. doi: 10.3969/j.issn.1006-8023.2019.01.015.
  • Liu Y, Liu S, Zhou M. Effects of fly ash and slag on volume stability of cement-based steel slag sand mortar, China. Concrete Cem Products. 2011;11:1–5. doi: 10.3969/j.issn.1000-4637.2011.11.001.
  • Zhang M, Li K, Ni W, et al. Preparation of mine backfilling from steel slag-based non-clinker combined with ultra-fine tailing. Constr Build Mater. 2022;320:126248. doi: 10.1016/j.conbuildmat.2021.126248.
  • Cui X, Ni W, Ren C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag. Chin J Mater Res. 2017;31(9):687–694. doi: 10.11901/1005.3093.2016.741.
  • Wang Q, Yan P, Feng J. A discussion on improving hydration activity of steel slag by altering its mineral compositions. J Hazard Mater. 2011;186(2–3):1070–1075. doi: 10.1016/j.jhazmat.2010.11.109.
  • Zhang Y, Yu P, Pan F, et al. The synergistic effect of AFt enhancement and expansion in Portland cement–aluminate cement–FGD gypsum composite cementitious system. Constr Build Mater. 2018;190:985–994. doi: 10.1016/j.conbuildmat.2018.09.139.
  • Chen X, Gao J, Yan Y, et al. Investigation of expansion properties of cement paste with circulating fluidized bed fly ash. Constr Build Mater. 2017;157:1154–1162. doi: 10.1016/j.conbuildmat.2017.08.159.
  • Qian J, Yu J, Sun H, et al. Formation and function of ettringite in cement hydrates. J Chin Ceram. 2017;45(11):1569–1581. doi: 10.14062/j.issn.0454-5648.2017.11.04.
  • Chen L, Chen X, Wang L, et al. Compressive strength, pore structure, and hydration products of slag foam concrete under sulfate and chloride environment. Constr Build Mater. 2023;394:132141. doi: 10.1016/j.conbuildmat.2023.132141.
  • Deng G, He Y, Lu L, et al. Pore structure evolution and sulfate attack of high-volume slag blended mortars under standard curing and steam curing. Constr Build Mater. 2023;363:129878. doi: 10.1016/j.conbuildmat.2022.129878.
  • Pipilikaki P, Beazi-Katsioti M. The assessment of porosity and pore size distribution of limestone Portland cement pastes. Constr Build Mater. 2009;23(5):1966–1970. doi: 10.1016/j.conbuildmat.2008.08.028.
  • Tan H, Nie K, He X, et al. Compressive strength and hydration of high-volume wet-grinded coal fly ash cementitious materials. Constr Build Mater. 2019;206:248–260. doi: 10.1016/j.conbuildmat.2019.02.038.
  • Wu M, Zhang Y, Liu G, et al. Experimental study on the performance of lime-based low carbon cementitious materials. Constr Build Mater. 2018;168:780–793. doi: 10.1016/j.conbuildmat.2018.02.156.
  • Kua H. Integrated policies to promote sustainable use of steel slag for construction—a consequential life cycle embodied energy and greenhouse gas emission perspective. Energ Build. 2015;101:133–143. doi: 10.1016/j.enbuild.2015.04.036.
  • Symons K. Embodied carbon: the inventory of carbon and energy (ICE): a BSRIA guide. Proc Inst Civ Eng. 2011;164(4):206–206. doi: 10.1680/ener.2011.164.4.206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.