33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Time-dependent buildability evaluation of 3D printed concrete: experimental validation and numerical simulation

, , , , &

References

  • Pegna J. Exploratory investigation of solid freeform construction. Autom Constr. 1997;5(5):427–437. doi: 10.1016/S0926-5805(96)00166-5.
  • Labonnote N, Rønnquist A, Manum B, et al. Additive construction: state-of-the-art, challenges and opportunities. Autom Constr. 2016;72:347–366. doi: 10.1016/j.autcon.2016.08.026.
  • Khoshnevis B. Automated construction by contour crafting—related robotics and information technologies. Autom Constr. 2004;13(1):5–19. doi: 10.1016/j.autcon.2003.08.012.
  • Wolfs RJM, Bos FP, Salet TAM. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing. Cem Concr Res. 2018;106:103–116. doi: 10.1016/j.cemconres.2018.02.001.
  • Fuyan L, Zhao D, Hou X, et al. Overview of the development of 3D-printing concrete: a review. Appl Sci. 2021;11(21):9822. doi: 10.3390/app11219822.
  • Akbar M, Hussain Z, Imran M, et al. Concrete matrix based on marble powder, waste glass sludge, and crumb rubber: pathways towards sustainable concrete. Front Mater. 2024;10. doi: 10.3389/fmats.2023.1329386.
  • Paul SC, Van GP, Tan MJ, et al. A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyp J. 2018;24(4):784–798. doi: 10.1108/RPJ-09-2016-0154.
  • Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11(3):209–225. doi: 10.1080/17452759.2016.1209867.
  • Wu P, Wang J, Wang X. A critical review of the use of 3-D printing in the construction industry. Autom Constr. 2016;68:21–31. doi: 10.1016/j.autcon.2016.04.005.
  • Gizem SH, Aghabaglou AM. Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review. Constr Build Mater. 2022;316:125865.
  • Yanqun X, Yuan Q, Li Z, et al. Correlation of interlayer properties and rheological behaviors of 3DPC with various printing time intervals. Addit Manuf. 2021;47:102327. doi: 10.1016/j.addma.2021.102327.
  • Jayathilakage R, Rajeev P, Sanjayan JG. Yield stress criteria to assess the buildability of 3D concrete printing. Constr Build Mater. 2020;240:117989. doi: 10.1016/j.conbuildmat.2019.117989.
  • Zhang L, Wu Q, Ma H, et al. Corrosion resistance of magnesium ammonium phosphate cement-based coatings modified by calcium sulfoaluminate cement on carbon steel in a saline medium. J Mater Civ Eng. 2024;36(6). doi: 10.1061/JMCEE7.MTENG-1714.
  • Suiker A. Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments. Int J Mech Sci. 2018;137:145–170. doi: 10.1016/j.ijmecsci.2018.01.010.
  • Wolfs R, Suiker A. Structural failure during extrusion-based 3D printing processes. Int J Adv Manuf Technol. 2019;104(1–4):565–584. doi: 10.1007/s00170-019-03844-6.
  • Rehman AU, Kim JH. 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials. 2021;14(14):3800. doi: 10.3390/ma14143800.
  • An D, Zhang YX, Yang R. Numerical modelling of 3D concrete printing: material models, boundary conditions and failure identification. Eng Struct. 2024;299:117104. doi: 10.1016/j.engstruct.2023.117104.
  • Khan MA. Mix suitable for concrete 3D printing: a review. Mater Today Proc. 2020;32:831–837. doi: 10.1016/j.matpr.2020.03.825.
  • Wolfs RJM, Bos FP, Salet TAM. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cem Concr Compos. 2019;104:103344. doi: 10.1016/j.cemconcomp.2019.103344.
  • Roussel N. Rheological requirements for printable concretes. Cem Concr Res. 2018;112:76–85.
  • Carlo D, Khoshnevis B, Carlson A. Experimental and numerical techniques to characterize structural properties of fresh concrete. In: ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers; 2013. doi: 10.1115/IMECE2013-63993.
  • Akbar M, Hussain Z, Pan H, et al. Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete. Struct Eng Mech. 2023;85(2):275–287. doi: 10.12989/sem.2023.85.2.275.
  • Jeong H, Han S, Choi S, et al. Rheological property criteria for buildable 3D printing concrete. Materials. 2019;12(4):657. doi: 10.3390/ma12040657.
  • Kruger J, Zeranka S, Zijl GV. 3D concrete printing: a lower bound analytical model for buildability performance quantification. Autom Constr. 2019;106:102904. doi: 10.1016/j.autcon.2019.102904.
  • Mukhametrakhimov R. Investigation of plasticizing additives based on polycarboxylate esters on the properties of concretes formed by 3D printing. Constr Mater Prod. 2022;5(5):42–58. doi: 10.58224/2618-7183-2022-5-5-42-58.
  • Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2016;49(4):1213–1220. doi: 10.1617/s11527-015-0571-0.
  • Akbar M, Pan H, Huang J, et al. Influence of various earth-retaining walls on the dynamic response comparison, based on 3D modeling. Comput Model Eng Sci. 2024;139(3):2835–2863. doi: 10.32604/cmes.2024.046993.
  • Amran M, Abdelgader HS, Onaizi AM, et al. 3D-printable alkali-activated concretes for building applications: a critical review. Constr Build Mater. 2022;319:126126. doi: 10.1016/j.conbuildmat.2021.126126.
  • De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete—technical, economic and environmental potential. Cem Concr Res. 2018;112:25–36. doi: 10.1016/j.cemconres.2018.06.001.
  • Mengesha, M., Schmidt, A., Göbel, L., Lahmer, T. (2020). Numerical Modeling of an Extrusion-Based 3D Concrete Printing Process Considering a Spatially Varying Pseudo-Density Approach. In: Bos, F., Lucas, S., Wolfs, R., Salet, T. (eds) Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Bookseries, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-49916-7_33.
  • Akbar M, Umar T, Hussain Z, et al. Effect of human hair fibers on the performance of concrete incorporating high dosage of silica fume. Appl Sci. 2022;13(1):124. doi: 10.3390/app13010124.
  • Voigt T, Mbele J-J, Wang K, et al. Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement. J Mater Civ Eng. 2010;22(2):196–206. doi: 10.1061/(ASCE)0899-1561(2010)22:2(196).
  • Chen W-F, Han D-J. Plasticity for structural engineers. J. Ross Publishing; 2007. ISBN 1932159754, 9781932159752
  • Lloret E, Shahab AR, Linus M, et al. Complex concrete structures: merging existing casting techniques with digital fabrication. Comput Aided Des. 2015;60:40–49. doi: 10.1016/j.cad.2014.02.011.
  • Hüsken G, Brouwers H. On the early-age behavior of zero-slump concrete. Cem Concr Res. 2012;42(3):501–510. doi: 10.1016/j.cemconres.2011.11.007.
  • Lu G, Wang K. Investigation into yield behavior of fresh cement paste: model and experiment. ACI Mater J. 2010;107(1):8.
  • Roussel N. A thixotropy model for fresh fluid concretes: theory, validation and applications. Cem Concr Res. 2006;36(10):1797–1806. doi: 10.1016/j.cemconres.2006.05.025.
  • Alfani R, Guerrini GL. Rheological test methods for the characterization of extrudable cement-based materials—a review. Mater Struct. 2005;38(2):239–247. doi: 10.1007/BF02479349.
  • ASTM C150/C150M-20. Standard specification for sulfoaluminate and Portland cement. West Conshohocken (PA): ASTM; 2020.
  • Wille K, Naaman AE, Parra-Montesinos G. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way. ACI Mater J. 2011;108(1):46–54.
  • Umar T, Yousaf M, Akbar M, et al. An experimental study on non-destructive evaluation of the mechanical characteristics of a sustainable concrete incorporating industrial waste. Materials. 2023;15(20):7346. doi: 10.3390/ma15207346.
  • Shiva B, Sedghi R, Hojati M. Evaluating the printability and rheological and mechanical properties of 3D-printed earthen mixes for carbon-neutral buildings. Sustainability. 2023;15(21):15617. doi: 10.3390/su152115617.
  • Standard test method for unconfined compressive strength of cohesive soil; 2013. ASTM, Designation: D 2166-00.
  • Standard test method for unconfined compressive strength of cohesive soil; 2013. ASTM, Designation: D 2166-00
  • Akbar M, Huali P, Guoqiang O, et al. Investigation of the displacement-based seismic performance of geogrid earth-retaining walls using three-dimensional finite element modeling. Results Eng. 2024;21:101802. doi: 10.1016/j.rineng.2024.101802.
  • Sun B, Li P, Wang D, et al. Evaluation of mechanical properties and anisotropy of 3D printed concrete at different temperatures. J. Struct. 2023;51:391–401. doi: 10.1016/j.istruc.2023.03.045.
  • Shahzad Q, Wang X, Wang W, et al. Coordinated adjustment and optimization of setting time, flowability, and mechanical strength for construction 3D printing material derived from solid waste. Constr Build Mater. 2020;259:119854. doi: 10.1016/j.conbuildmat.2020.119854.
  • Shahzad Q, Abbas N, Akbar M, et al. Influence of print speed and nozzle diameter on the fiber alignment in 3D printed ultra-high-performance concrete. Front Mater. 2024;11:1355647. doi: 10.3389/fmats.2024.1355647.
  • Waqar S, Sun Q, Liu J, et al. Numerical investigation of thermal behavior and melt pool morphology in multi-track multi-layer selective laser melting of the 316L steel. Int J Adv Manuf Technol. 2021;112(3–4):879–895. doi: 10.1007/s00170-020-06360-0.
  • Waqar S, Guo K, Sun J. Evolution of residual stress behavior in selective laser melting (SLM) of 316L stainless steel through preheating and in-situ re-scanning techniques. Opt Laser Technol. 2022;149:107806. doi: 10.1016/j.optlastec.2021.107806.
  • Waqar S, Guo K, Sun J. FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel. J Manuf Process. 2021;66:81–100. doi: 10.1016/j.jmapro.2021.03.040.
  • Shahzad Q, Shen J, Naseem R, et al. Influence of phase change material on concrete behavior for construction 3D printing. Constr Build Mater. 2021;309:125121. doi: 10.1016/j.conbuildmat.2021.125121.
  • Shahzad Q, Muhammad U, Waqar S. Bibliographic analysis on 3D printing in the building and construction industry: printing systems, material properties, challenges, and future trends. J Sustain Constr Mater Technol. 2022;7(3):198–220. doi: 10.47481/jscmt.1143239.
  • Ahmed S, Hussain A, Hussain Z, et al. Effect of carbon black and hybrid steel–polypropylene fiber on the mechanical and self-sensing characteristics of concrete considering different coarse aggregates’ sizes. Materials. 2021;14(23):7455. doi: 10.3390/ma14237455.
  • Hussain Z, Pu Z, Hussain A, et al. Effect of fiber dosage on water permeability using a newly designed apparatus and crack monitoring of steel fiber–reinforced concrete under direct tensile loading. Struct Health Monit. 2022;21(5):2083–2096. doi: 10.1177/14759217211052855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.