888
Views
17
CrossRef citations to date
0
Altmetric
COMMENTARIES

A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature

Pages 69-72 | Received 21 Aug 2014, Accepted 17 Dec 2014, Published online: 03 Feb 2015

References

  • Rubin EM. Genomics of cellulosic biofuels. Nature 2008; 454(7206):841-5; PMID:18704079; http://dx.doi.org/10.1038/nature07190
  • Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005; 16:577-83; PMID:16154338; http://dx.doi.org/10.1016/j.copbio.2005.08.009
  • La Grange DC, den Haan R, van Zyl WH. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 2010: 87(4):1195-208; PMID:20508932; http://dx.doi.org/10.1007/s00253-010-2660-x
  • Carere CR, Sparling R, cieek N, Levin DB. Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 2008; 9:1342-60; PMID:19325807; http://dx.doi.org/10.3390/ijms9071342
  • Wilson DB. Cellulases and biofuels. Curr Opin Biotechnol 2009; 20:295-9; PMID:19502046; http://dx.doi.org/10.1016/j.copbio.2009.05.007
  • Olson DG, McBride JE, Shaw AJ, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2011; 23:1-10; PMID:22176748; http://dx.doi.org/10.1016/j.ceb.2010.12.003
  • Nichlaou SA, Gaida SM, Papoussakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 2010 12:307-31; PMID:20346409; http://dx.doi.org/10.1016/j.ymben.2010.03.004
  • Kim J-H, Block DE, Millis DA. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotypes for efficient fermentation of ligocellulosic biomass. Appl Microbiol Biotechnol 2010; 88:1077-85; PMID:20838789; http://dx.doi.org/10.1007/s00253-010-2839-1
  • Agrawal M, Mao Z, Chen RR. Adaptation yields highly efficient xylose-fermenting zymomonas mobilis strain. Biotechnol Bioeng 2011; 108:777-85; PMID:21404252; http://dx.doi.org/10.1002/bit.23021
  • Sekar R, Shin H-D, Chen RR. Engineering Escherichia coli cells for celobiose assimilation through a phosphorolytic mechanism. Appl Environ Microbiol 2012; 78(5):1611-14; PMID:22194295; http://dx.doi.org/10.1128/AEM.06693-11
  • Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD. Cellodextrin transport in yeast for improved biofuel production. Science 2010 ( Oct.1); 330:84-6; PMID:20829451; http://dx.doi.org/10.1126/science.1192838
  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol BioL Rev 2002; 66(3):506-77; PMID:12209002; http://dx.doi.org/10.1128/MMBR.66.3.506-577.2002
  • Shin HD, Wu J, Chen RR. Comparative engineering of E. coli for cellobiose utilization: hydrolysis versus phosphorolysis. Metab Eng 2014; 24:9-17; PMID:24769131; http://dx.doi.org/10.1016/j.ymben.2014.04.002
  • Lee WH, Nan H, Kin HJ, Jin YS. Simultaneous saccharification and fermentation by engineered Sacchromyces cerevisiae without supplementing extracellular b-glucosidse. J Biotech 2013; 167:316-22; PMID:23835155; http://dx.doi.org/10.1016/j.jbiotec.2013.06.016
  • Yamada R, Nakatani Y, Ogino C, Kondo A. Efficient direct ethnol production form cellulose by cellulase- and cellodextrin transporter-co-expressing Sacchromces cerevisiae. AMB Express 2013; 3:34; PMID:23800294; http://dx.doi.org/10.1186/2191-0855-3-34
  • Ha S-J, Galazka JM, Kim SR, Choi J_H, Yang X, Seo J-H, Glass NL, Cate JHD, Jin Y-S. Engineered Sacchromyces cerecisiae capable of simultaneous cellobiose and xylose fermentation. PNAS 2011a; 108(2):504-9; PMID:21187422; http://dx.doi.org/10.1073/pnas.1010456108
  • Lian J Li Y, HamediRad M, Zhao H. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Biotechnol Bioeng 2014; 111(8):1521-31; PMID:24519319; http://dx.doi.org/10.1002/bit.25214
  • Li J, Liu G, Chen M, Li Z, Qin Y, Qu Y. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungus penicillium oxalicum. Appl Microbiol Biotechnol 2013; 97(24):10479-88; PMID:24132667; http://dx.doi.org/10.1007/s00253-013-5301-3
  • Rutter C, Chen R, Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms. Biotechnol Lett 2014; 36(2):301-7; PMID:24101240; http://dx.doi.org/10.1007/s10529-013-1365-5
  • Chomvong K, Kordic V, Li X, Bauer S, Gillespie AE, Ja S-J, OH EJ, Galazka JM, Jin Y-S, Cate JHD. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnol Buifuels 2014; 7(7):85; PMID:24944578; http://dx.doi.org/10.1186/1754-6834-7-85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.