611
Views
7
CrossRef citations to date
0
Altmetric
Research Paper - Invited

Biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with an NADH-dependent reductase (ClCR) discovered by genome data mining using a modified colorimetric screening strategy

, , , , , & show all
Pages 170-174 | Received 23 Jan 2015, Accepted 05 Feb 2015, Published online: 01 Apr 2015

References

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T. Industrial methods for the production of optically active intermediates. Angew Chem Int Ed Engl 2004; 43:788-824; PMID: 14767950; http://dx.doi.org/10.1002/anie.200300599
  • Cao H, Mi L, Ye Q, Zhang G L, Yan M, Wang Y, Zhang Y Y, Li X M, Xu L, Xiong J, et al. Purification and characterization of a novel NADH-dependent carbonyl reductase from Pichia stipitis involved in biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate. Bioresour Technol 2011; 102:1733-9; PMID: 20933386; http://dx.doi.org/10.1016/j.biortech.2010.08.072
  • He Y C, Tao Z C, Zhang X, Yang Z X, Xu J H. Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate and its derivatives by a robust NADH-dependent reductase from E. coli CCZU-K14. Bioresour Technol 2014; 461-4; PMID: 24745897; http://dx.doi.org/10.1016/j.biortech.2014.03.133
  • Ošlaj M, Cluzeau J, Orkić D, Kopitar G, Mrak P, Časar Z. A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis. 2013; PLoS One. 2013; 8(5): e62250; PMID: 23667462; http://dx.doi.org/10.1371/journal.pone.0062250
  • Choi H J, Uhm K N, Kim H K. Production of chiral compound using recombinant Escherichia coli cells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system. J Mol Catal B: Enzym 2011; 70:114-8; http://dx.doi.org/10.1016/j.molcatb.2011.02.013
  • Ema T, Ide S, Okita N, Sakai T. Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Adv Synth Catal 2008; 350:2039-44; http://dx.doi.org/10.3390/biom4010117;
  • Jung J, Park H J, Uhm K N, Kim D, Kim H K. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies. Biochim Biophys Acta 2010; 1804:1841-9; PMID: 20601218; http://dx.doi.org/10.1016/j.bbapap.2010.06.011
  • Ye Q, Cao H, Mi L, Yan M, Wang Y, He Q T, Li J, Xu L, Chen Y J, Xiong J, et al. Biosynthesis of (S)-4-chloro-3-hydroxybutanoate ethyl using Escherichia coli co-expressing a novel NADH-dependent carbonyl reductase and a glucose dehydrogenase. Bioresour Technol 2010; 101:8911-4; PMID: 20630744; http://dx.doi.org/10.1016/j.biortech.2010.06.098
  • Inoue K, Makino K, Itoh N. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: a promising biocatalyst for an asymmetric hydrogen transfer bioreduction. Appl Environ Microbiol 2005; 71:3633-41; PMID: 16000771; http://dx.doi.org/10.1128/AEM.71.7
  • Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O. Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols. Angew Chem Int Ed 2006; 45:5677-81; PMID: 16858704; http://dx.doi.org/10.1002/anie.200503394
  • Goldberg K, Schroer K, Lütz S, Liese A. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols-part I: processes with isolated enzymes. Appl Microbiol Biotechnol 2007; 76:237-48; PMID: 17486338; http://dx.doi.org/10.1007/s00253-007-1002-0
  • De Wildeman S M, Sonke T, Schoemaker H E, May O. Biocatalytic reductions: from lab curiosity to "first choice". Acc Chem Res 2007; 40:1260-6; PMID: 17941701; http://dx.doi.org/10.1021/ar7001073
  • Yamamoto H, Mitsuhashi K, Kimoto N, Esaki N, Kobayshi Y. A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate. Biosci Biotechnol Biochem 2004; 68:638-49; PMID: 15056898; http://dx.doi.org/10.1271/bbb.68.638
  • Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues. Appl Microbiol Biotechnol 2003; 61:133-9; PMID: 12655455; http://dx.doi.org/10.1007/s00253-002-1188-0
  • Wang Q, Shen L, Ye T, Cao D, Chen R, Pei X, Xie T, Li Y, Gong W, Yin X. Overexpression and characterization of a novel (S)-specific extended short-chain dehydrogenase/reductase from Candida parapsilosis. Bioresour Technol 2012; 123:690-4; PMID: 22939596; http://dx.doi.org/10.1016/j.biortech.2012.07.060
  • Ye Q, Yan M, Yao Z, Xu L, Cao H, Li Z J, Chen Y, Li S Y, Bai J X, Xiong J, et al. A new member of the short-chain dehydrogenases/reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresour Technol 2009; 100:6022-7; PMID: 19574038; http://dx.doi.org/10.1016/j.biortech.2009.06.014
  • Wang L J, Li C X, Ni Y, Zhang J, Liu X, Xu J H. Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresour Technol 2011; 102:7023-8; PMID: 21570826; http://dx.doi.org/10.1016/j.biortech.2011.04.046
  • He Y C, Yang Z X, Zhang D P, Tao Z C, Chen C, Chen Y T, Guo F, Xu J H, Huang L, Chen R J, et al. Biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by NADH-dependent reductase from E. coli CCZU-Y10 discovered by genome data mining using mannitol as cosubstrate. Appl Biochem Biotechnol 2014; 173:2042-53; PMID: 24880894; http://dx.doi.org/10.1007/s12010-014-1001-4
  • He Y C, Ma C L, Xu J H, Zhou L. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry. Appl Microbiol Biotechnol 2011; 89:817-23; PMID: 21038095; http://dx.doi.org/10.1007/s00253-010-2977-5
  • He Y C, Zhang D P, Tao Z C, Zhang X, Yang Z X. Discovery of a reductase-producing strain recombinant E. coli CCZU-A13 using colorimetric screening and its whole cell-catalyzed biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate. Bioresour Technol 2014; 172:342-8; PMID: 25277262; http://dx.doi.org/10.1016/j.biortech.2014.09.062
  • Nakagawa A, Minami H, Kim J S, Koyanagi T, Katayama T, Sato F, Kumagai H. Bench-top fermentative production of plant benzylisoquinoline alkaloids using a bacterial platform. Bioeng Bugs. 2012; 3(1):49-53; PMID: 22179145; http://dx.doi.org/10.1038/ncomms1327

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.