2,094
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

, , &
Pages 209-217 | Received 20 Mar 2015, Accepted 08 Apr 2015, Published online: 10 Jun 2015

References

  • Kennedy C, Toukdarian A. Genetics of azotobacters: applications to nitrogen fixation and related aspects of metabolism. Annu Rev Microbiol 1987; 41:227-58; PMID:3318669; http://dx.doi.org/10.1146/annurev.mi.41.100187.001303
  • Setubal JC, dos Santos P, Goldman BS, HErtesvåg H, Espin G, LRubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, et al. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 2009; 191:4534-45
  • Burk D, Lineweaver H. The influence of fixed nitrogen on Azotobacter. J Bacteriol 1930; 19:389-414; PMID:16559435
  • Lee CC, Hu Y, Ribbe MW. Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. Proc Natl Acad Sci USA 2009; 106:9209-14.
  • Oelze J. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 2000; 24:321-33; PMID:10978541
  • Galindo E, Pena C, Núñez C, Segura D, Espín G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 2007; 6:7; PMID:17306024
  • Page WJ, Knosp O. Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 1989; 55:1334-9; PMID:16347925
  • Remminghorst U, Rehm BH. Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 2006; 28:1701-12; PMID:16912921; http://dx.doi.org/10.1007/s10529-006-9156-x
  • Sabra W, Zeng AP, Deckwer WD. Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol 2001; 56:315-25; PMID:11548998; http://dx.doi.org/10.1007/s002530100699
  • Keshavarz T, Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 2010; 13:321-6; PMID:20227907; http://dx.doi.org/10.1016/j.mib.2010.02.006
  • Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 1998; 65:127-61; PMID:9828458; http://dx.doi.org/10.1016/S0168-1656(98)00126-6
  • Parker LT, Socolofsky MD. Central body of the Azotobacter cyst. J Bacteriol 1966; 91:297-303; PMID:4955249
  • Pindar DF, Bucke C. The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem J 1975; 152:617-22; PMID:179528
  • Stevenson LH, Socolofsky MD. Cyst formation and poly-β-hydroxybutyric acid accumulation in Azotobacter. J Bacteriol 1966; 91:304-10; PMID:5903098
  • Remminghorst U, Rehm BH. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 2006; 72:298-305; PMID:16391057
  • Peralta-Gil M, Segura D, Guzmán J, Servín-González L, Espín G. Expression of the Azotobacter vinelandii poly-β-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 2002; 184:5672-7; PMID:12270825
  • Castañeda M, Guzmán J, Moreno S, Espín G. The GacS sensor kinase regulates alginate and poly-β-hydroxybutyrate production in Azotobacter vinelandii. J Bacteriol 2000; 182:2624-8; PMID:10762268
  • Castañeda M, Sánchez J, Moreno S, Núñez C, Espín G. The global regulators GacA and σS form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol 2001; 183:6787-93; PMID:11698366
  • Martínez-Salazar JM, Moreno S, Nájera R, Boucher JC, Espín G Soberón-Chávez G, Deretic V. Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 1996; 178:1800-8; PMID:8606151
  • Moreno S, Nájera R, Guzmán J, Soberón-Chávez G, Espín G. Role of alternative sigma factor algU in encystment of Azotobacter vinelandii. J Bacteriol 1998; 180:2766-9; PMID:9573166
  • Núñez C, León R, Guzmán J, Espín G, Soberón-Chávez, G. Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 2000; 182:6550-6; PMID:11073894
  • Pyla R, Kim TJ, Silva JL, Jung YS. Overproduction of poly-β-hydroxybutyrate in the Azotobacter vinelandii mutant that does not express small RNA ArrF. Appl Microbiol Biotechnol 2009; 84:717-24
  • Segura D, Espín G. Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 1998; 180:4790-8; PMID:9733679
  • Senior PJ, Dawes EA. The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 1973; 134:225-38; PMID:4723225
  • Wu G, Moir AJ, Sawers G, Hill S, Poole RK. Biosynthesis of poly-β-hydroxybutyrate (PHB) is controlled by CydR (Fnr) in the obligate aerobe Azotobacter vinelandii. FEMS Microbiol Lett 2001; 194:215-20; PMID:11164311
  • Horan NJ, Jarman TR, Dawes EA. Effects of carbon source and inorganic phosphate concentration on the production of alginic acid by a mutant of Azotobacter vinelandii and on the enzymes involved in its biosynthesis. J Gen Microbiol 1981; 127:185-91
  • Page WJ, von Tigerstrom M. Induction of transformation competence in Azotobacter vinelandii iron-limited cultures. Can J Microbiol 1978; 24:1590-4; PMID:747819
  • Coombs A. Glycerin bioprocessing goes green. Nat Biotechnol 2007; 25:953-4.
  • da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009; 27:30-9; PMID:18775486; http://dx.doi.org/10.1016/j.biotechadv.2008.07.006
  • Bizzini A, Zhao C, Budin-Verneuil A, Sauvageot N, Giard JC, Auffray Y, Hartke A. Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. J Bacteriol 2010; 192:779-85; PMID:19966010
  • Wang ZX, Zhuge J, Fang H, Prior BA. Glycerol production by microbial fermentation: a review. Biotechnol Adv 2001; 19:201-23; PMID:14538083; http://dx.doi.org/10.1016/S0734-9750(01)00060-X
  • Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 2006; 9:268-74; PMID:16617034
  • Petty F. GABA and mood disorders: a brief review and hypothesis. J Affect Disord 1995; 34:275-81; PMID:8550953; http://dx.doi.org/10.1016/0165-0327(95)00025-I
  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol 1999; 181:3525-35; PMID:10348866
  • Page WJ, Manchak J, Rudy B. Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl Environ Microbiol 1992; 58:2866-73; PMID:1444399
  • Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 2010; 26:424-30; PMID:19953601; http://dx.doi.org/10.1002/btpr.355
  • Cui B, Huang S, Xu F, Zhang R, Zhang Y. Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Appl Microbiol Biotechnol 2015; In press
  • Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 2009; 44:509-15.
  • Tanadchangsaeng N, Yu J. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol Bioeng 2012; 109:2808-18; PMID:22566160; http://dx.doi.org/10.1002/bit.24546
  • Kalaiyezhini D, Ramachandran KB. Biosynthesis of poly-3-hydroxybutyrate (PHB) from glycerol by Paracoccus denitrificans in a batch bioreactor: effect of process variables. Prep Biochem Biotechnol 2015; 45:69-83; PMID:24547951
  • Ashby R, Solaiman D, Strahan G. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers. J Am Oil Chem Soc 2011; 88:949-59
  • Ibrahim MHA, Steinbüchel A. Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 2009; 75:6222-31; PMID:19666728
  • Hashimoto W, Miyamoto Y, Yamamoto M, Yoneyama F, Murata K. A novel bleb-dependent polysaccharide export system in the nitrogen-fixing Azotobacter vinelandii subjected to low nitrogen gas levels. Int Microbiol 2013; 16:35-44; PMID:24151780
  • Matsuzawa T, Ohashi T, Hosomi A, Tanaka N, Tohda H, Takegawa K. The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2010; 87:715-27; PMID:20396879
  • Braunegg G, Sonnleitner B, Lafferty RM. A rapid gas chromatographic method for the determination of poly-3-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 1978; 6:29-37; http://dx.doi.org/10.1007/BF00500854
  • Tsuge T, Tanaka K, Ishizaki A. Development of a novel method for feeding a mixture of L-lactic acid and acetic acid in fed-batch culture of Ralstonia eutropha for poly-D-3-hydroxybutyrate production. J Biosci Bioeng 2001; 91:545-50; PMID:16233037
  • Knutson CA, Jeanes A. Determination of the composition of uronic acid mixtures. Anal Biochem 1968; 24:482-90; PMID:5723303; http://dx.doi.org/10.1016/0003-2697(68)90155-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.