2,150
Views
18
CrossRef citations to date
0
Altmetric
Review

Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance

&
Pages 328-334 | Received 29 Jul 2015, Accepted 16 Oct 2015, Published online: 11 Dec 2015

References

  • Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 2014; 9:609-20; PMID:24677744; http://dx.doi.org/10.1002/biot.201300445
  • Otte KB, Hauer B. Enzyme engineering in the context of novel pathways and products. Curr Opin Biotechnol 2015; 35C:16-22; http://dx.doi.org/10.1016/j.copbio.2014.12.011
  • Uhlenbusch I, Sahm H, Sprenger GA. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine. Appl Environ Microbiol 1991; 57:1360-6; PMID:1854197
  • Colón GE, Nguyen TT, Jetten MSM, Sinskey AJ, Stephanopoulos G. Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 1995; 43:482-8; http://dx.doi.org/10.1007/BF00218453
  • Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter I, de Vos WM. Metabolic engineering of Lactococcus lactis: influence of the overproduction of α-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol 1995; 61:3967-71; PMID:8526510
  • Bakker BM, Michels PAM, Opperdoes FR, Westerhoff HV. What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 1999; 274:14551-9; PMID:10329645; http://dx.doi.org/10.1074/jbc.274.21.14551
  • Hauf J, Zimmermann FK, Müller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 2000; 26:688-98; PMID:10862874; http://dx.doi.org/10.1016/S0141-0229(00)00160-5
  • Snoep JL, Yomano LP, Westerhoff HV, Ingram LO. Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 1995; 141:2329-37; http://dx.doi.org/10.1099/13500872-141-9-2329
  • Peter Smits H, Hauf J, Müller S, Hobley TJ, Zimmermann FK, Hahn-Hägerdal B, Nielsen J, Olsson L. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 2000; 16:1325-34; PMID:11015729; http://dx.doi.org/10.1002/1097-0061(200010)16:14<1325::AID-YEA627>3.0.CO;2-E
  • Schaaff I, Heinisch J, Zimmermann FK. Overproduction of glycolytic enzymes in yeast. Yeast 1989; 5:285-90; PMID:2528863; http://dx.doi.org/10.1002/yea.320050408
  • Ikeda M, Takeno S. Amino acid production by Corynebacterium glutamicum. In: Yukawa H, Inui M, eds. Corynebacterium glutamicum: Springer Berlin Heidelberg, 2013:107-47
  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 2004; 7:182-96; PMID:15383716; http://dx.doi.org/10.1159/000079827
  • Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2005; 68:475-80; PMID:15672268; http://dx.doi.org/10.1007/s00253-005-1900-y
  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2008; 78:449-54; PMID:18188553; http://dx.doi.org/10.1007/s00253-007-1336-7
  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 2008; 81:459-64; PMID:18777022; http://dx.doi.org/10.1007/s00253-008-1668-y
  • Jojima T, Fujii M, Mori E, Inui M, Yukawa H. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl Microbiol Biotechnol 2010; 87:159-65; PMID:20217078; http://dx.doi.org/10.1007/s00253-010-2493-7
  • Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol 2012; 78:4447-57; PMID:22504802; http://dx.doi.org/10.1128/AEM.07998-11
  • Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation. Appl Environ Microbiol 2012; 78:865-75; PMID:22138982; http://dx.doi.org/10.1128/AEM.07056-11
  • Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 2013; 79:1250-7; PMID:23241971; http://dx.doi.org/10.1128/AEM.02806-12
  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 2004; 8:243-54; PMID:16179801; http://dx.doi.org/10.1159/000086705
  • Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:1165-72; PMID:25421564; http://dx.doi.org/10.1007/s00253-014-6223-4
  • Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng 2013; 110:2938-48; PMID:23737329; http://dx.doi.org/10.1002/bit.24961
  • Jojima T, Inui M, Yukawa H. Biorefinery applications of Corynebacterium glutamicum. In: Yukawa H, Inui M, eds. Corynebacterium glutamicum: Springer Berlin Heidelberg, 2013:149-72
  • Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H. Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum D-lactate productivity under oxygen deprivation. Appl Microbiol Biotechnol 2013; 97:6693-703; PMID:23712891; http://dx.doi.org/10.1007/s00253-013-4986-7
  • Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H, Inui M. Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 2015; 99:4679-89; PMID:25820644; http://dx.doi.org/10.1007/s00253-015-6546-9
  • Dominguez H, Nezondet C, Lindley ND, Cocaign M. Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotech Lett 1993; 15:449-54; http://dx.doi.org/10.1007/BF00129316
  • Jojima T, Igari T, Gunji W, Suda M, Inui M, Yukawa H. Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS lett 2012; 586:4228-32; PMID:23108048; http://dx.doi.org/10.1016/j.febslet.2012.10.028
  • Jojima T, Igari T, Moteki Y, Suda M, Yukawa H, Inui M. Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 2015; 99:1427-33; PMID:25363556; http://dx.doi.org/10.1007/s00253-014-6170-0
  • Papagianni M, Avramidis N. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzyme Microb Technol 2011; 49:197-202; PMID:22112409; http://dx.doi.org/10.1016/j.enzmictec.2011.05.002
  • Koebmann B, Solem C, Jensen PR. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. FEBS J 2005; 272:2292-303; PMID:15853813; http://dx.doi.org/10.1111/j.1742-4658.2005.04656.x
  • Emmerling M, Bailey JE, Sauer U. Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli. Biotechnol Bioeng 2000; 67:623-7; PMID:10649237; http://dx.doi.org/10.1002/(SICI)1097-0290(20000305)67:5<623::AID-BIT13>3.0.CO;2-W
  • Davies SE, Brindle KM. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 1992; 31:4729-35; PMID:1533788; http://dx.doi.org/10.1021/bi00134a028
  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE. Ethanol production by Zymomonas mobilis. Microbial Reactions: Springer Berlin Heidelberg, 1982:37-84
  • Snoep JL, Arfman N, Yomano LP, Westerhoff HV, Conway T, Ingram LO. Control of glycolytic flux in Zymomonas mobilis by glucose 6-phosphate dehydrogenase activity. Biotechnol Bioeng 1996; 51:190-7; PMID: 18624328; http://dx.doi.org/10.1002/(SICI)1097-0290(19960720)51:2<190::AID-BIT8>3.0.CO;2-E
  • Huerta-Beristain G, Utrilla J, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A. Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 2008; 15:55-64; PMID: 18349551; http://dx.doi.org/10.1159/000111993
  • Solem C, Koebmann BJ, Jensen PR. Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J Bacteriol 2003; 185:1564-71; PMID:12591873; http://dx.doi.org/10.1128/JB.185.5.1564-1571.2003
  • Koebmann B, Solem C, Jensen PR. Control analysis of the importance of phosphoglycerate enolase for metabolic fluxes in Lactococcus lactis subsp. lactis IL1403. Syst Biol (Stevenage) 2006; 153:346-9; PMID:16986314; http://dx.doi.org/10.1049/ip-syb:20060022
  • Solem C, Koebmann B, Jensen PR. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis. IET Syst Biol 2008; 2:64-72; PMID:18397117; http://dx.doi.org/10.1049/iet-syb:20070002
  • Solem C, Petranovic D, Koebmann B, Mijakovic I, Jensen PR. Phosphoglycerate mutase is a highly efficient enzyme without flux control in Lactococcus lactis. J Mol Microbiol Biotechnol 2010; 18:174-80; PMID:20530968; http://dx.doi.org/10.1159/000315458
  • Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 2012; 78:3325-37; PMID:22389371; http://dx.doi.org/10.1128/AEM.07790-11
  • Andersen HW, Solem C, Hammer K, Jensen PR. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J Bacteriol 2001; 183:3458-67; PMID:11344154; http://dx.doi.org/10.1128/JB.183.11.3458-3467.2001
  • Smallbone K, Messiha HL, Carroll KM, Winder CL, Malys N, Dunn WB, Murabito E, Swainston N, Dada JO, Khan F, et al. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS lett 2013; 587:2832-41; PMID:23831062; http://dx.doi.org/10.1016/j.febslet.2013.06.043
  • Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 2005; 71:6465-72; PMID:16269670; http://dx.doi.org/10.1128/AEM.71.11.6465-6472.2005
  • Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 2002; 184:3909-16; PMID:12081962; http://dx.doi.org/10.1128/JB.184.14.3909-3916.2002
  • Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009; 11:262-73; PMID:19464384; http://dx.doi.org/10.1016/j.ymben.2009.05.003
  • Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 2010; 76:7154-60; PMID:20851994; http://dx.doi.org/10.1128/AEM.01464-10
  • Komati Reddy G, Lindner SN, Wendisch VF. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol 2015; 81:1996-2005; PMID:25576602; http://dx.doi.org/10.1128/AEM.03116-14
  • Benisch F, Boles E. The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase. J Biotechnol 2014; 171:45-55; PMID:24333129; http://dx.doi.org/10.1016/j.jbiotec.2013.11.025
  • Abengoa. Press release. 2014:http://static.abengoabiotech.com/wp-content/uploads/2014/09/Abengoa-Hugoton-plant-grand-opening-press-release_final_10.17.14.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.