2,118
Views
19
CrossRef citations to date
0
Altmetric
Addendum

Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids

&
Pages 357-360 | Received 16 Sep 2015, Accepted 09 Nov 2015, Published online: 11 Dec 2015

References

  • Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. Phytochemistry 2015; 114:66-101; PMID:25975187; http://dx.doi.org/10.1016/j.phytochem.2015.03.010
  • Xu JW, Zhao W, Zhong JJ. Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 2010; 87:457-66; PMID:20437236; http://dx.doi.org/10.1007/s00253-010-2576-5
  • Shi L, Ren A, Mu D, Zhao M. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl Microbiol Biotechnol 2010; 88:1243-51; PMID:20859739; http://dx.doi.org/10.1007/s00253-010-2871-1
  • Kim S, Song J, Choi HT. Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration. FEMS Microbiol Lett 2004; 233:201-4; PMID:15063487; http://dx.doi.org/10.1111/j.1574-6968.2004.tb09483.x
  • Shi L, Fang X, Li M, Mu D, Ren A, Tan Q, Zhao M. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World J Microbiol Biotechnol 2012; 28:283-91; PMID:22806804; http://dx.doi.org/10.1007/s11274-011-0818-z
  • Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 2012; 3:913; PMID:22735441; http://dx.doi.org/10.1038/ncomms1923
  • Sun L, Cai H, Xu W, Hu Y, Gao Y, Lin Z. Efficient transformation of the medicinal mushroom Ganoderma lucidum. Plant Mol Biol Rep 2001; 19:383a-383j; http://dx.doi.org/10.1007/BF02772841
  • Xu JW, Xu YN, Zhong JJ. Enhancement of ganoderic acid accumulation by overexpression of an N-terminally truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase gene in the basidiomycete Ganoderma lucidum. Appl Environ Microbiol 2012; 78:7968-76; PMID:22941092; http://dx.doi.org/10.1128/AEM.01263-12
  • Yu X, Ji SL, He YL, Ren MF, Xu JW. Development of an expression plasmid and its use in genetic manipulation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes). Int J Med Mushrooms 2014; 16:161-68; PMID:24941037; http://dx.doi.org/10.1615/IntJMedMushr.v16.i2.60
  • Zhou JS, Ji SL, Ren MF, He YL, Jing XR, Xu JW. Enhanced accumulation of individual ganoderic acids in a submerged culture of Ganoderma lucidum by the overexpression of squalene synthase gene. Biochem Eng J 2014; 90:178-83; http://dx.doi.org/10.1016/j.bej.2014.06.008
  • Xu JW, Ji SL, Li HJ, Ren MF, Duan YQ, Dang LZ, Mo MH. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene. Bioproc Biosyst Eng 2015; 38:399-405; http://dx.doi.org/10.1007/s00449-014-1279-1
  • Ji SL, Liu R, Ren MF, Li HJ, Xu JW. Enhanced production of polysaccharide through overexpression of homologous uridine diphosphate glucose pyrophosphorylase gene in a submerged culture of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher basidiomycetes). Int J Med Mushrooms 2015; 17:435-42; PMID:26082982; http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i5.30
  • Kilaru S, Collins CM, Hartley AJ, Burns C, Foster GD, Bailey AM. Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and reevaluation of hygromycin and phleomycin resistance vectors. Curr Genet 2009; 55:543-50; PMID:19636558; http://dx.doi.org/10.1007/s00294-009-0266-6
  • Sun L, Cai H, Xu W, Hu Y, Lin Z. CaMV 35S promoter directs β-glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus. Mol Biotechnol 2002; 20:239-44; PMID:11936254; http://dx.doi.org/10.1385/MB:20:3:239
  • Blatzer M, Gsaller F, Abt B, Schrettl M, Specht T, Haas H. An endogenous promoter for conditional gene expression in Acremonium chrysogenum: The xylan and xylose inducible promoter xyl1P. J Biotechnol 2014; 169:82-6; PMID:24246269; http://dx.doi.org/10.1016/j.jbiotec.2013.11.003
  • Mooibroek H, Kuipers AGJ, Sietsma JH, Punt PJ, Wessels JGH. Introduction of hygromycin B resistance into Schizophyllum commune preferential methylation of donor DNA. Mol Gen Genet 1990; 222:41-8; PMID:1700269
  • Scholtmeijer K, Wösten HAB, Springer J, Wessels JGH. Effect of introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune. Appl Envrion Microbiol 2001; 67:481-3; http://dx.doi.org/10.1128/AEM.67.1.481-483.2001
  • Schuren FHJ, Wessels JGH. Expression of heterologous genes in Schizophyllum commune is often hampered by the formation of truncated transcripts. Curr Genet 1998; 33:151-6; PMID:9506904; http://dx.doi.org/10.1007/s002940050321
  • Tanaka M, Tokuoka M, Gomi K. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi. Appl Microbiol Biotechnol 2014; 98:3859-67; PMID:24682479; http://dx.doi.org/10.1007/s00253-014-5609-7
  • Csernetics A, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, Papp T. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi. Fungal Genet Biol 2011; 48:696-703; PMID:21443966; http://dx.doi.org/10.1016/j.fgb.2011.03.006
  • Herr A, Fischer R. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes. Metab Eng 2014; 25:131-9; PMID:25043338; http://dx.doi.org/10.1016/j.ymben.2014.07.002
  • Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD. Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 2012; 14:656-60
  • Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 2009; 141:31-41; PMID:19428728; http://dx.doi.org/10.1016/j.jbiotec.2009.02.018
  • Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q. Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signaling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol J 2014; 12:105-15; PMID:24102834; http://dx.doi.org/10.1111/pbi.12121
  • Davuluri GR, van Trinen A, Fraser PD, Manfredonia A, Newman B, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 2005; 23:890-5; PMID:15951803; http://dx.doi.org/10.1038/nbt1108
  • Yu GJ, Wang M, Huang J, Yin YL, Chen YJ, Jiang S, Jin YX, Lan XQ, Wong BH, Liang Y, Sun H. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. Plos One 2012; 7:e44031; PMID:22952861; http://dx.doi.org/10.1371/journal.pone.0044031
  • Yu GJ, Yin YL, Yu WH, Liu W, Jin YX, Shrestha A, Yang Q, Ye XD, Sun H. Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. Plos One 2015; 10:e0119439; PMID:25756518; http://dx.doi.org/10.1371/journal.pone.0119439
  • Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J. Molecular tools for functional genomics in filamentous fungi: Recent advances and new strategies. Biotech Adv 2013; 31:1562-74; http://dx.doi.org/10.1016/j.biotechadv.2013.08.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.