1,355
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Combining MPDL3280A with adoptive cell immunotherapy exerts better antitumor effects against cervical cancer

, , , , &
Pages 367-373 | Received 17 Aug 2016, Accepted 24 Aug 2016, Published online: 18 Oct 2016

Reference

  • Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 2007; 121:621-32; PMID:17405118; https://doi.org/10.1002/ijc.22527
  • Walboomers JM. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189:12-9; PMID:10451482; https://doi.org/10.1002/(SICI)1096-9896(199909)189:1%3c12::AID-PATH431%3e3.0.CO;2-F
  • Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer 2008; 122:247-259; PMID:17973257; https://doi.org/10.1002/ijc.23252
  • Psyrri A, Daniel D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol 2008; 5:24-31; PMID:18097454; https://doi.org/10.1038/ncponc0984
  • Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348:63-68.
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265-77; PMID:22437871; https://doi.org/10.1038/nrc3258
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch dendritic cell-based interventions for cancer therapy. OncoImmunology 2012; 1:1111-34.
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Adoptive cell transfer immunotherapy. OncoImmunology 2012; 1:306-15.
  • Momtaz P, Postow MA. Immunologic checkpoints in cancer therapy: focus on the programmed death-1 (PD-1) receptor pathway. Pharmacogenomics and Personalized Medicine 2014; 7:357-65; PMID:25484597
  • Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V, Foley JE, Massey PR, Felizardo TC, Riley JL, et al. The PDL1-PD1 axis converts human Th1 cells into regulatory T Cells. Sci Transl Med 2011; 3:111-20.
  • Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004; 173:945-54; PMID:15240681; https://doi.org/10.4049/jimmunol.173.2.945
  • Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, Krummel MF, Bluestone JA. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10:1185-92; PMID:19783989; https://doi.org/10.1038/ni.1790
  • Wang W, Lau R, Yu D, Zhu W, Korman A, Weber J. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int Immunol 2009; 21:1065-77; PMID:19651643; https://doi.org/10.1093/intimm/dxp072
  • Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 2009; 15:517-35.
  • Badoual C, Combe P, Gey A, Granier C, Roussel H, De Guillebon E, Oudard S, Tartour E. PD-1 and PDL-1 expression in cancer: significance and prognostic value. Med Sci (Paris) 2013; 29:570-2.
  • Droeser RA, Hirt C, Viehl CT. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer 2013; 49:2233-42; PMID:23478000; https://doi.org/10.1016/j.ejca.2013.02.015
  • Fullár A, Kovalszky I, Bitsche M, Romani A. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp Cell Res 2012; 318:1517-27; https://doi.org/10.1016/j.yexcr.2012.03.023
  • Ghebeh H, Mohammed S, Al-Omair A. The B7-1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 2006; 8:190-8; PMID:16611412; https://doi.org/10.1593/neo.05733
  • Hamanishi J, Mandai M, Iwasaki M. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 2007; 104:3360-5; PMID:17360651; https://doi.org/10.1073/pnas.0611533104
  • Ohigashi Y, Sho M, Yamada Y. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 2005; 11:2947-53; PMID:15837746; https://doi.org/10.1158/1078-0432.CCR-04-1469
  • Thompson RH, Kuntz SM, Leibovich BC. Tumor B7-1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow- up. Cancer Res 2006; 66:3381-5; PMID:16585157; https://doi.org/10.1158/0008-5472.CAN-05-4303
  • Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG, Xu N. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 2006; 108:19-24; PMID:16530813; https://doi.org/10.1016/j.acthis.2006.01.003
  • Karim R, Jordanova ES, Piersma SJ, Kenter GG, Chen L, Boer JM, Melief CJ, van der Burg SH. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 2009; 15:6341-7; PMID:19825956; https://doi.org/10.1158/1078-0432.CCR-09-1652
  • Geng WP, Xu M, Wang YQ. An investigation of PDL1, PDL2 and B7-H4 expressions in human cervical cancer and their significance. J of Chongqing medical university 2011; 36:1186-9.
  • Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al. Predictive correlates of response to the anti-PDL1 antibody MPDL3280A in cancer patients. Nature 2014; 27:563-7.
  • Strome SE, Dong H, Tamura H. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003; 63:6501-5; PMID:14559843
  • Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, et al. Fine. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014; 27:558-62; https://doi.org/10.1038/nature13904
  • Yoon SH. Immunotherapy for non-small cell lung cancer. Tuberc Respir Dis 2014; 77:111-5; https://doi.org/10.4046/trd.2014.77.3.111
  • Duraiswamy J, Freeman GJ, Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy to prevent immune decline in ovarian cancer. Cancer Res 2013; 73:6900-12.
  • Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014; 32:1020-30; PMID:24590637; https://doi.org/10.1200/JCO.2013.53.0105
  • Wolchok JD, Kluger H, Callahan MK, Postow MA. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369:122-33; PMID:23724867; https://doi.org/10.1056/NEJMoa1302369
  • Albert ML, Bhardwaj N. Resurrecting the dead: DCs cross-present antigen derived from apoptotic cells on MHCI. Immunologist 1998; 6:194-8.
  • Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol 2003; 4:1169-76; PMID:14639467; https://doi.org/10.1038/ni1012
  • Hanada T, Yoshida H, Kato S, Tanaka K, Masutani K. Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity 2003; 19:437-50; PMID:14499118; https://doi.org/10.1016/S1074-7613(03)00240-1
  • Guenterberg KD, Lesinski GB, Mundy-Bosse BL, Karpa VI, Jaime-Ramirez AC, Wei L, Carson WE 3rd. Enhanced anti-tumor activity of interferon-α in SOCS1-defificient mice is mediated by CD4+ and CD8+ T cells. Cancer Immunol Immun 2011; 60:1281-8; https://doi.org/10.1007/s00262-011-1034-2
  • Zhu Y, Zheng Y, Mei L, Liu M, Li S, Xiao H, Zhu H, Wu S, Chen H, Huang L. Enhanced immunotherapeutic effect of modified HPV16 E7-pulsed dendritic cell vaccine by an adeno-shRNA-SOCS1 virus. Int J Oncol 2013; 43:1151-9; PMID:23877655

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.