1,816
Views
21
CrossRef citations to date
0
Altmetric
Research Paper

Regulatory roles of 24-epibrassinolide in tolerance of Acacia gerrardii Benth to salt stress

, , , &
Pages 61-71 | Received 28 Dec 2016, Accepted 14 Feb 2017, Published online: 01 Nov 2017

References

  • Abd_Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J. Biol. Sci 2015; 22:274-83; PMID:25972748; https://doi.org/10.1016/j.sjbs.2015.03.004
  • Yusuf, M., Fariduddin, Q., Ahmad. A. 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: A shotgun approach. Plant Physiol. Biochem 2012; 57:143-153; PMID:22705589; https://doi.org/10.1016/j.plaphy.2012.05.004
  • Murphy LR, Kinsley ST, Durako MJ. Physiological effects of short-term salinity changes on Ruppia maritima. Aquat. Bot 2003; 75:293-309; https://doi.org/10.1016/S0304-3770(02)00206-1
  • Soussi M, Lluch C, Ocana A. Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arietinum L.) cultivars under salt stress. J. Exp. Bot 1999; 50:1701-08; https://doi.org/10.1093/jxb/50.340.1701
  • Soussi M, Ocana A, Lluch C. Effect of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer arietinum L.). J. Exp. Bot 1998; 14:1329-37; https://doi.org/10.1093/jxb/49.325.1329
  • Tzortzakis NG. Potassium and calcium enrichment alleviate salinity-induced stress in hydroponically grown endives. Hort. Sci. (Prague) 2010; 37(4):155-62.
  • Hashem A, Alterami SA, Alqarawi AA, Abd_Allah EF, Egamberdieva D. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak. J. Bot 2016; 48(1):37-46.
  • Sarwat M, Hashem A, Ahanger MA, Abd_Allah EF, Alqarawi AA, Alyemeni MN, Ahmad P, Gucel S. Mitigation of NaCl stress by arbuscular mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica juncea L.) plants. Front. Plant Sci 2016; 7:869; PMID:27458462; https://doi.org/10.3389/fpls.2016.00869
  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K. Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress Aust. J. Crop Sci 2011; 5(11):1441-47.
  • Alyemeni MN, Hayat S, Wijaya L, Anaji A. Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Botanica Brasilica 2013; 27(3):502-5; https://doi.org/10.1590/S0102-33062013000300007
  • Ahmad P, Hashem A, Abd_Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front. Plant Sci 2015; 6:868; PMID:26528324; https://doi.org/10.3389/fpls.2015.00868
  • Cargnelutti D, Tabald LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Linares CE, Dressler VL, de Moraes-Flores EM, Nicoloso FT, Morsch VM, Schetinger MR. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 2006; 65:999-1006; PMID:16674986; https://doi.org/10.1016/j.chemosphere.2006.03.037
  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P. Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. In: “Physiological mechanisms and adaptation strategies in plants under changing environment” Volume I. Eds: Ahmad, P, Wani, MR. Springer Science+Business Media, Inc., city, 2014; pp 25-56.
  • Ahanger MA, Agarwal RM, Tomar NS, Shrivastava M. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J. Plant. Int 2015; 10(1):211-23.
  • Ahmad P, Abd_Allah EF, Hashem A, Sarwat M, Gucel S. Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern & Cross) by up-regulating antioxidative system and secondary metabolites. J. Plant Growth Regul 2016; 35(4):936-950; https://doi.org/10.1007/s00344-016-9592-3
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Rev. Biotech 2010; 30(3):161-75; https://doi.org/10.3109/07388550903524243
  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol 2015; 173:9-18; PMID:25462073; https://doi.org/10.1016/j.jplph.2014.09.011
  • Gudesblat GE, Russinova E. Plants grow on brassinosteroids. Curr Opinion Plant Biol 2011; 14:530-37; https://doi.org/10.1016/j.pbi.2011.05.004
  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ. Exp. Bot 2010; 69:105-12; https://doi.org/10.1016/j.envexpbot.2010.03.004
  • Divi UK, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 2010; 10:151-64; PMID:20642851; https://doi.org/10.1186/1471-2229-10-151
  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A. Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiol Plant 2013a; 35:2037-53; https://doi.org/10.1007/s11738-013-1263-4
  • Anuradha S, Rao SSR. The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 2007; 53(11):465-72.
  • Fariduddin Q, Khalil RRAE, Mir BA, Yusuf M, Ahmad A. Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 2013b; 185:7845-56; https://doi.org/10.1007/s10661-013-3139-x
  • Lichtenthaler, H.K., and Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans 1983; 11:591-92; https://doi.org/10.1042/bst0110591
  • Smart RE, Bingham GE. Rapid estimates of relative water content. Plant Physiol 1974; 53:258-60; PMID:16658686; https://doi.org/10.1104/pp.53.2.258
  • Sairam RK, Deshmukh PS, Shukla DS. Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J. Agron Crop Sci 1997; 178:171-8; https://doi.org/10.1111/j.1439-037X.1997.tb00486.x
  • Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. Review 1971; 44:276-87; https://doi.org/10.1016/0003-2697(71)90370-8
  • Aebi H. Catalase in vitro, In: Methods in Enzymology, Vol. 105, S.p. Colowick, and N. O. Kaplan (Eds.). Academic Press, New York, 1984 pp. 121-126.
  • Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 1981; 22:867-80.
  • Smith IK, Vierheller TL, Thurne CA. Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 1988; 175:408-13; PMID:3239770; https://doi.org/10.1016/0003-2697(88)90564-7
  • Miyake, C., Asada, K. Thylakoid bound ascorbate peroxidase in spinach chloroplast and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 1992; 33:541-53.
  • Song YL, Dong YJ, Tian XY, Kong J, Bai XY, Xu LL, He ZL. Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biologia Plantarum 2016; 60(2): 329-42; https://doi.org/10.1007/s10535-016-0596-4
  • Ali B, Hayat S, Ahmad A. 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany 2007; 59:217-23; https://doi.org/10.1016/j.envexpbot.2005.12.002
  • El-Mashad AAA, Mohamed HI. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 2012; 249:625-35; PMID:21732069; https://doi.org/10.1007/s00709-011-0300-7
  • Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 2009; 47:1-8; PMID:19010688; https://doi.org/10.1016/j.plaphy.2008.10.002
  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A. 24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica 2014; 52 (3):464-74; https://doi.org/10.1007/s11099-014-0052-7
  • Anuradha S, Rao SSR. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation 2003; 40:29-32; https://doi.org/10.1023/A:1023080720374
  • Yuan L, Shu S, Sun J, Guo S, Tezuka T. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosyn Res 2012; 112:205-14; PMID:22864978; https://doi.org/10.1007/s11120-012-9774-1
  • Fang Z, Bouwkamp J C, Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J. Exp Bot 1998; 49(320):503-10.
  • Li XJ, Guo X, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ. Over-expression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biology 2016; 16:33; PMID:26822290; https://doi.org/10.1186/s12870-016-0715-6
  • Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem 2007; 282:1183-92; PMID:17105724; https://doi.org/10.1074/jbc.M603761200
  • Chen YA, Chi WC, Huang TL, Lin CY, Nguyeh TTQ, Hsiung YC, Chia LC, Huang HJ. Mercury-induced biochemical and proteomic changes in rice roots. Plant Physiol. Biochem 2012; 55:23-32; PMID:22522577; https://doi.org/10.1016/j.plaphy.2012.03.008
  • Sirhindi G, Kumar S, Bhardwaj R, Kumar M. Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L. Physiol. Mol. Biol. Plants 2009; 15(4):335-41; PMID:23572944; https://doi.org/10.1007/s12298-009-0038-2
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 2013; 35:1039-50; https://doi.org/10.1007/s11738-012-1142-4
  • Tausz M, Sircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot 2004; 55(404):1955-62; PMID:15234995; https://doi.org/10.1093/jxb/erh194