2,313
Views
1
CrossRef citations to date
0
Altmetric
Commentary - Invited

Surrogate strains of human pathogens for field release

, , & ORCID Icon
Pages 17-24 | Received 19 Jun 2017, Accepted 26 Jun 2017, Published online: 26 Jul 2017

References

  • Milillo SR, Friedly EC, Saldivar JC, Muthaiyan A, O'Bryan C, Crandall PG, Johnson MG, Ricke SC. A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Crit Rev Food Sci Nutr 2012; 52:712-25; PMID:22591342; https://doi.org/10.1080/10408398.2010.507909
  • Tufts JA, Calfee MW, Lee SD, Ryan SP. Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research. World J Microbiol Biotechnol 2014; 30:1453-61; PMID:24338558; https://doi.org/10.1007/s11274-013-1576-x
  • de Moraes MH, Chapin TK, Ginn A, Wright AC, Parker K, Hoffman C, Pascual DW, Danyluk MD, Teplitski M. Development of an avirulent Salmonella surrogate for modeling pathogen behavior in pre- and postharvest environments. Appl Environ Microbiol 2016; 82:4100-11; PMID:27129962; https://doi.org/10.1128/AEM.00898-16
  • Carrera M, Zandomeni RO, Fitzgibbon J, Sagripanti JL. Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J Appl Microbiol 2007; 102:303-12; PMID:17241334; https://doi.org/10.1111/j.1365-2672.2006.03111.x
  • Sagripanti JL, Carrera M, Insalaco J, Ziemski M, Rogers J, Zandomeni R. Virulent spores of Bacillus anthracis and other Bacillus species deposited on solid surfaces have similar sensitivity to chemical decontaminants. J Appl Microbiol 2007; 102:11-21; PMID:17184315; https://doi.org/10.1111/j.1365-2672.2006.03235.x
  • Moyne AL, Sudarshana MR, Blessington T, Koike ST, Cahn MD, Harris LJ. Fate of Escherichia coli O157:H7 in field-inoculated lettuce. Food Microbiol 2011; 28:1417-25; PMID:21925023; https://doi.org/10.1016/j.fm.2011.02.001
  • Ritchie JM, Campbell GR, Shepherd J, Beaton Y, Jones D, Killham K, Artz RR. A stable bioluminescent construct of Escherichia coli O157:H7 for hazard assessments of long-term survival in the environment. Appl Environ Microbiol 2003; 69:3359-67; PMID:12788737; https://doi.org/10.1128/AEM.69.6.3359-3367.2003
  • Unge A, Tombolini R, Molbak L, Jansson JK. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 1999; 65:813-21; PMID:9925621
  • Erickson MC, Webb CC, Diaz-Perez JC, Phatak SC, Silvoy JJ, Davey L, Payton AS, Liao J, Ma L, Doyle MP. Infrequent internalization of Escherichia coli O157:H7 into field-grown leafy greens. J Food Prot 2010; 73:500-6; PMID:20202336; https://doi.org/10.4315/0362-028X-73.3.500
  • Webb CC, Erickson MC, Davey LE, Payton AS, Doyle MP. Construction and characterization of outbreak Escherichia coli O157:H7 surrogate strains for use in field studies. Foodborne Pathog Dis 2014; 11:893-9; PMID:25268966; https://doi.org/10.1089/fpd.2014.1798
  • Islam M, Morgan J, Doyle MP, Phatak SC, Millner P, Jiang X. Persistence of Salmonella enterica serovar typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathog Dis 2004; 1:27-35; PMID:15992259; https://doi.org/10.1089/153531404772914437
  • Curtiss R, 3rd, Hassan JO. Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. Vet Immunol Immunopathol 1996; 54:365-72; PMID:8988881; https://doi.org/10.1016/S0165-2427(96)05683-8
  • McDonough KA, Rodriguez A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 2011; 10:27-38; PMID:22080930
  • Girardin H, Morris CE, Albagnac C, Dreux N, Glaux C, Nguyen-The C. Behaviour of the pathogen surrogates Listeria innocua and Clostridium sporogenes during production of parsley in fields fertilized with contaminated amendments. FEMS Microbiol Ecol 2005; 54:287-95; PMID:16332327; https://doi.org/10.1016/j.femsec.2005.04.003
  • Greenberg DL, Busch JD, Keim P, Wagner DM. Identifying experimental surrogates for Bacillus anthracis spores: a review. Investig Genet 2010; 1:4; PMID:21092338; https://doi.org/10.1186/2041-2223-1-4
  • Gibbons HS, Broomall SM, McNew LA, Daligault H, Chapman C, Bruce D, Karavis M, Krepps M, McGregor PA, Hong C, et al. Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant. PLoS One 2011; 6:e17836; PMID:21464989; https://doi.org/10.1371/journal.pone.0017836
  • Silvestri EE, Sarah P, Robert L, William K, Tonya N, Charlena Yoder B, Dale G, Frank WS. Observations on the migration of Bacillus spores outside a contaminated facility during a decontamination efficacy study. J Bioterror Biodef 2015; 6:135; https://doi.org/10.4172/2157-2526.1000135
  • Kournikakis B, Ho J, Duncan S. Anthrax letters: personal exposure, building contamination, and effectiveness of immediate mitigation measures. J Occup Environ Hyg 2010; 7:71-9; PMID:19916102; https://doi.org/10.1080/15459620903389558
  • Garza AG, Van Cuyk SM, Brown MJ, Omberg KM. Detection of the urban release of a Bacillus anthracis simulant by air sampling. Biosecur Bioterror 2014; 12:66-75; PMID:24697146; https://doi.org/10.1089/bsp.2013.0086
  • Van Cuyk S, Veal LA, Simpson B, Omberg KM. Transport of Bacillus thuringiensis var. kurstaki via fomites. Biosecur Bioterror 2011; 9:288-300; PMID:21882970; https://doi.org/10.1089/bsp.2010.0073
  • Van Cuyk S, Deshpande A, Hollander A, Franco DO, Teclemariam NP, Layshock JA, Ticknor LO, Brown MJ, Omberg KM. Transport of Bacillus thuringiensis var. kurstaki from an outdoor release into buildings: pathways of infiltration and a rapid method to identify contaminated buildings. Biosecur Bioterror 2012; 10:215-27; PMID:22676846; https://doi.org/10.1089/bsp.2011.0081
  • Buckley P, Rivers B, Katoski S, Kim MH, Kragl FJ, Broomall S, Krepps M, Skowronski EW, Rosenzweig CN, Paikoff S, et al. Genetic barcodes for improved environmental tracking of an anthrax simulant. Appl Environ Microbiol 2012; 78:8272-80; PMID:23001658; https://doi.org/10.1128/AEM.01827-12
  • Emanuel PA, Buckley PE, Sutton TA, Edmonds JM, Bailey AM, Rivers BA, Kim MH, Ginley WJ, Keiser CC, Doherty RW, et al. Detection and tracking of a novel genetically tagged biological simulant in the environment. Appl Environ Microbiol 2012; 78:8281-8; PMID:23001670; https://doi.org/10.1128/AEM.02006-12
  • Bishop AH, Robinson CV. Bacillus thuringiensis HD-1 Cry−: development of a safe, non-insecticidal simulant for Bacillus anthracis. J Appl Microbiol 2014; 117:654-62; PMID:24903218; https://doi.org/10.1111/jam.12560
  • Buhr TL, Young AA, Bensman M, Minter ZA, Kennihan NL, Johnson CA, Bohmke MD, Borgers-Klonkowski E, Osborn EB, Avila SD, et al. Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis. J Appl Microbiol 2016; 120:1074-84; PMID:26786717; https://doi.org/10.1111/jam.13055
  • Park S, Kim C, Lee D, Song DH, Cheon KC, Lee HS, Kim SJ, Kim JC, Lee SY. Construction of Bacillus thuringiensis simulant strains suitable for environmental release. Appl Environ Microbiol 2017; 83:e00126-17; PMID:28258144; https://doi.org/10.1128/AEM.00126-17
  • He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S, et al. Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol 2010; 192:4074-5; PMID:20525827; https://doi.org/10.1128/JB.00562-10
  • Vilas-Boas LA, Vilas-Boas GF, Saridakis HO, Lemos MV, Lereclus D, Arantes OM. Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol Ecol 2000; 31:255-9; PMID:10719207; https://doi.org/10.1016/S0168-6496(00)00002-7
  • Bishop AH, Rachwal PA, Vaid A. Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing. Curr Microbiol 2014; 68:477-85; PMID:24310935; https://doi.org/10.1007/s00284-013-0502-7
  • Barfod KK, Poulsen SS, Hammer M, Larsen ST. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice. BMC Microbiol 2010; 10:233; PMID:20815884; https://doi.org/10.1186/1471-2180-10-233
  • Schmidt M, de Lorenzo V. Synthetic bugs on the loose: containment options for deeply engineered (micro) organisms. Curr Opin Biotechnol 2016; 38:90-6; PMID:26874261; https://doi.org/10.1016/j.copbio.2016.01.006
  • Simon AJ, Ellington AD. Recent advances in synthetic biosafety. F1000Res 2016; 5:2118; https://doi.org/10.12688/f1000research.8365.1
  • Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 2015; 518:89-93; PMID:25607356; https://doi.org/10.1038/nature14095
  • Torres L, Kruger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410; PMID:27903826; https://doi.org/10.1042/EBC20160013
  • Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ. Synthetic gene networks that count. Science 2009; 324:1199-202; PMID:19478183; https://doi.org/10.1126/science.1172005
  • Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, Silver PA. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 2014; 111:4838-43; PMID:24639514; https://doi.org/10.1073/pnas.1321321111
  • Prokup A, Deiters A. Engineering a bacterial tape recorder. Chembiochem 2015; 16:1027-9; PMID:25821162; https://doi.org/10.1002/cbic.201500061
  • Shipman SL, Nivala J, Macklis JD, Church GM. Molecular recordings by directed CRISPR spacer acquisition. Science 2016; 353:aaf1175; PMID:27284167; https://doi.org/10.1126/science.aaf1175