1,582
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Examining the molecular characteristics of glycoside hydrolase family 20 β-N-acetylglucosaminidases with high activity

, , , , , ORCID Icon & show all
Pages 71-77 | Received 14 Jun 2018, Accepted 29 Mar 2019, Published online: 13 Apr 2019

References

  • Li BB, Li H, Lu L, et al. Structures of human O-GlcNAcase and its complexes reveal a new substrate recognition mode. Nat Struct Mol Biol. 2017;24:362–370. PMID:28319083.
  • Litzinger S, Duckworth A, Nitzsche K, et al. Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by β-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase. J Bacteriol. 2010;192:3132–3143. PMID:20400549.
  • Herlihey FA, Moynihan PJ, Clarke AJ. The essential protein for bacterial flagella formation FlgJ functions as a β-N-acetylglucosaminidase. J Biol Chem. 2014;289:31029–31042. PMID:25248745.
  • Lee JO, Yi JK, Lee SG, et al. Production of N-acetylneuraminic acid from N-acetylglucosamine and pyruvate using recombinant human renin binding protein and sialic acid aldolase in one pot. Enzyme Microb Tech. 2004;35:121–125.
  • Inokuma K, Hasunuma T, Kondo A. Ethanol production from N-acetyl-D-glucosamine by Scheffersomyces stipitis strains. AMB Express. 2016;6:83. PMID:27699702.
  • Vyas P, Deshpande M. Enzymatic hydrolysis of chitin by Myrothecium verrucaria chitinase complex and its utilization to produce SCP. J Gen Appl Microbiol. 1991;37:267–275.
  • Matsuo I, Kim S, Yamamoto Y, et al. Cloning and overexpression of β-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide. Biosci Biotech Bioch. 2003;67:646–650. PMID:12723619.
  • Rajnochova E, Dvorakova J, Hunkova Z, et al. Reverse hydrolysis catalysed by β-N-acetylhexosaminidase from Aspergillus oryzae. Biotechnol Lett. 1997;19:869–872.
  • Kaur S, Dhillon GS. Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol. 2015;35:44–61. PMID:24083454.
  • Da Silva AF, Garcia-Fraga B, Lopez-Seijas J, et al. Optimizing the expression of a heterologous chitinase: a study of different promoters. Bioengineered. 2017;8:428–432. PMID:27893301.
  • Hamed I, Ozogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Tech. 2016;48:40–50.
  • Zhang R, Zhou JP, Song ZF, et al. Enzymatic properties of β-N-acetylglucosaminidases. Appl Microbiol Biot. 2018;102:93–103. PMID:29143882.
  • Zhou JP, Song ZF, Zhang R, et al. A Shinella β-N-acetylglucosaminidase of glycoside hydrolase family 20 displays novel biochemical and molecular characteristics. Extremophiles. 2017;21:699–709. PMID:28432475.
  • Zhou JP, Song ZF, Zhang R, et al. Distinctive molecular and biochemical characteristics of a glycoside hydrolase family 20 β-N-acetylglucosaminidase and salt tolerance. BMC Biotechnol. 2017;17:37. PMID:28399848.
  • Shen JD, Zhang R, Li JJ, et al. Characterization of an exo-inulinase from Arthrobacter: a novel NaCl-tolerant exo-inulinase with high molecular mass. Bioengineered. 2015;6:99–105. PMID:25695343.
  • Zhou JP, Liu Y, Shen JD, et al. Kinetic and thermodynamic characterization of a novel low-temperature-active xylanase from Arthrobacter sp. GN16 isolated from the feces of Grus nigricollis. Bioengineered. 2015;6:111–114. PMID:25587940.
  • Tews I, Perrakis A, Oppenheim A, et al. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay–sachs disease. Nat Struct Mol Biol. 1996;3:638–648. PMID:8673609.
  • Tews I, Vincentelli R, Vorgias CE. N-Acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene. 1996;170:63–67. PMID:8621090.
  • Sumida T, Ishii R, Yanagisawa T, et al. Molecular cloning and crystal structural analysis of a novel β-N-acetylhexosaminidase from Paenibacillus sp. TS12 capable of degrading glycosphingolipids. J Mol Biol. 2009;392:87–99. PMID:19524595.
  • Lemieux MJ, Mark BL, Cherney MM, et al. Crystallographic structure of human β-hexosaminidase A: interpretation of Tay–sachs mutations and loss of GM2 ganglioside hydrolysis. J Mol Biol. 2006;359:913–929. PMID:16698036.
  • Hou Y, Tse R, Mahuran DJ. Direct determination of the substrate specificity of the α-active site in heterodimeric β-hexosaminidase A. Biochemistry. 1996;35:3963–3969. PMID:8672428.
  • Mark BL, Wasney GA, Salo TJS, et al. Structural and functional characterization of Streptomyces plicatus β-N-acetylhexosaminidase by comparative molecular modeling and site-directed mutagenesis. J Biol Chem. 1998;273:19618–19624. PMID:9677388.
  • Liu TA, Zhang HT, Liu FY, et al. Structural determinants of an insect β-N-acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. J Biol Chem. 2011;286:4049–4058. PMID:21106526.
  • Yang Q, Liu T, Liu FY, et al. A novel β-N-acetyl-D-hexosaminidase from the insect Ostrinia furnacalis (Guenee). FEBS J. 2008;275:5690–5702. PMID:18959754.
  • Yagonia CFJ, Park HJ, Hong SY, et al. Simultaneous improvements in the activity and stability of Candida antarctica lipase B through multiple-site mutagenesis. Biotechnol Bioproc E. 2015;20:218–224.
  • Hong SY, Park HJ, Yoo YJ. Flexibility analysis of activity-enhanced mutants of bacteriophage T4 lysozyme. J Mol Catal B-Enzym. 2014;106:95–99.
  • Hong SY, Yoo YJ. Activity enhancement of Candida antarctica lipase B by flexibility modulation in helix region surrounding the active site. Appl Biochem Biotech. 2013;170:925–933. PMID:23625607.
  • Bhabha G, Lee J, Ekiert DC, et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science. 2011;332:234–238. PMID:21474759.
  • Chen JJ, Liang X, Chen TJ, et al. Site-directed mutagenesis of a β-glycoside hydrolase from Lentinula edodes. Molecules. 2019;24:59. PMID:30586935.
  • Chen JJ, Liang X, Li HX, et al. Improving the catalytic property of the glycoside hydrolase LXYL-P1-2 by directed evolution. Molecules. 2017;22:2133. PMID:29207529.
  • Zheng F, Tu T, Wang XY, et al. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnol Biofuels. 2018;11:76. PMID:29588661.
  • Liu T, Duan YW, Yang Q. Revisiting glycoside hydrolase family 20 β-N-acetyl-D-hexosaminidases: crystal structures, physiological substrates and specific inhibitors. Biotechnol Adv. 2018;36:1127–1138. PMID:29597028.
  • Liu T, Zhou Y, Chen L, et al. Structural insights into cellulolytic and chitinolytic enzymes revealing crucial residues of insect β-N-acetyl-D-hexosaminidase. PLoS One. 2012;7:e52225. PMID:23300622.
  • Tu T, Pan X, Meng K, et al. Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo-polygalacturonases. Process Biochem. 2016;51:1230–1238.