6,029
Views
22
CrossRef citations to date
0
Altmetric
Review

Bioengineering tools for the production of pharmaceuticals: current perspective and future outlook

ORCID Icon, ORCID Icon & ORCID Icon
Pages 469-492 | Received 27 Jul 2019, Accepted 11 Oct 2019, Published online: 26 Oct 2019

References

  • Khatodia S, Khurana SMP. Genetic engineering for plant transgenesis. In: omics Technologies and Bio-Engineering. Elsevier; 2018. p. 71–86. doi:https://doi.org/10.1016/b978-0-12-815870-8.00005-x.
  • Jozala AF, Geraldes DC, Tundisi LL, et al. Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol. 2016;47:51–63.
  • Sangwan NS, Jadaun JS, Tripathi S, et al. Plant Metabolic Engineering. In: Omics Technologies and Bio-Engineering. Elsevier; 2018. p. 143–175. doi:https://doi.org/10.1016/b978-0-12-815870-8.00009-7.
  • Kalia A. Chapter 12 - Nanotechnology in Bioengineering: transmogrifying Plant Biotechnology. In: Barh D, Azevedo V, editors. Omics Technologies and Bio-Engineering. Academic Press; 2018. p. 211–229. doi:https://doi.org/10.1016/B978-0-12-815870-8.00012-7.
  • Wang G, Huang M, Nielsen J. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr Opin Biotech. 2017 Dec;48:77–84..
  • Patil RH, Patil MP, Maheshwari VL. Bioactive secondary metabolites from endophytic fungi. In: Studies in natural products chemistry. Elsevier; 2016. p. 189–205. doi:https://doi.org/10.1016/b978-0-444-63601-0.00005-3.
  • Xu N, Zhu J, Q Z, et al. Identification and characterization of novel promoters for recombinant protein production in yeast Pichia pastoris. Yeast. Wiley. 2018 8;35(5):379–385.
  • Qiao W, Ling F, Yu L, et al. Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol. 2017;121(12):1037–1044.
  • Kumaran RS, Kim HJ, Hur B-K. Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng. 2010;110(5):541–546.
  • Yang N, Pan X, Chen G, et al. Fermentation engineering for enhanced paclitaxel production by taxus media endophytic fungus MF-5 (Alternaria sp.). J Biobased Mater Bio. 2018;12(6):545–550.
  • Sudhakar N, Shanmugam H, Kumaran S, et al. Omics approaches in fungal biotechnology. In Omics Technologies and Bio-Engineering. Elsevier; 2018. p. 53–70. doi:https://doi.org/10.1016/b978-0-12-815870-8.00004-8.
  • Tzani I, Monger C, Kelly P, et al. Understanding biopharmaceutical production at single nucleotide resolution using ribosome footprint profiling. Curr Opin Biotech. 2018;53:182–190.
  • Kumar S, Dangi AK, Shukla P, et al. Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresour Technol. 2019;278:372–382.
  • Brown DP, Rogers DT, Gunjan SK, et al. Target-directed discovery and production of pharmaceuticals in transgenic mutant plant cells. J Biotechnol. 2016;238:9–14.
  • Breitling R, Takano E. Synthetic biology advances for pharmaceutical production. Curr Opin Biotech. 2015;35:46–51.
  • Li H, Shen CR, Huang CH, et al. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng. 2016;38:293–302.
  • Wang J, Kong S, Chen F, et al. A bioelectronic taste sensor based on bioengineered Escherichia coli cells combined with ITO-constructed electrochemical sensors. Anal Chim Acta. 2019. doi:https://doi.org/10.1016/j.aca.2019.06.023.
  • Amitai G, Sorek R. PanDaTox. Bioengineered. 2012;3(4):218–221.
  • Nakamae K, Nishimura Y, Takenaga M, et al. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO. Bioengineered. 2017;8(3):302–308.
  • Ventura M, Turroni F, van Sinderen D. Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioengineered. 2012;3(2):73–79.
  • Dziadek B, Brzostek A. Recombinant ROP2, ROP4, GRA4 and SAG1 antigen-cocktails as possible tools for immunoprophylaxis of toxoplasmosis. Bioengineered. 2012;3(6):358–364.
  • Kick L, Kirchner M, Schneider S. CRISPR-Cas9: from a bacterial immune system to genome-edited human cells in clinical trials. Bioengineered. 2017;8(3):280–286.
  • Khatodia S, Bhatotia K, Tuteja N. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered. 2017;8(3):274–279.
  • Nakade S, Yamamoto T, Sakuma T. Cas9, Cpf1 and C2c1/2/3—What’s next? Bioengineered. 2017;8(3):265–273.
  • Li Y, Li S, Li Y, et al. Generation of a novel HEK293 luciferase reporter cell line by CRISPR/Cas9-mediated site-specific integration in the genome to explore the transcriptional regulation of the PGRN gene. Bioengineered. 2019;10(1):98–107.
  • Perez RF, Nyman RKM, Johnson AAT, et al. CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered. 2018;9(1):214–221.
  • Al-Omari S, Mubarak AA, Al-Noaimi M, et al. Multielemental analysis of pharmaceuticals derived from plant seeds by energy dispersive X-ray fluorescence spectrometry. Instrum Sci Technol. 2015;44(1):98–113.
  • Schofield DA, Bull CT, Rubio I, et al. “Light-tagged” bacteriophage as a diagnostic tool for the detection of phytopathogens. Bioengineered. 2013;4(1):50–54.
  • Sarsaiya S, Jia Q, Fan X, et al. First report of leaf black circular spots on Dendrobium nobile caused by Trichoderma longibrachiatum in Guizhou Province, China. Plant Dis. 2019. doi:https://doi.org/10.1094/pdis-03-19-0672-pdn.
  • Narnoliya LK, Kaushal G, Singh SP, et al. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. BMC Genomics. 2017;18(1). DOI:https://doi.org/10.1186/s12864-016-3437-0
  • Mashima J, Kodama Y, Fujisawa T, et al. DNA Data Bank of Japan. Nucleic Acids Res. 2017;45:D25–D31.
  • Baker W, van Den Broek A, Camon E, et al. The EMBL nucleotide sequence database. Nucleic Acids Res. 2000;28(1):19–23.
  • Buchmann JP, Holmes EC. Entrezpy: A Python library to dynamically interact with the NCBI Entrez databases. Bioinformatics. 2019;11:btz385.
  • Mukherjee S, Stamatis D, Bertsch J, et al. Genomes online database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res. 2017;45:D446–D456.
  • Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110.
  • Parkinson H, Kapushesky M, Shojatalab M, et al. ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007;35:D747–D750.
  • Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–3788.
  • Mewes HW, Frishman D, Güldener U, et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 2002;30(1):31–34.
  • von Mering C, Huynen M, Jaeggi D, et al. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–261.
  • Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28(1):304–305.
  • Schomburg I, Chang A, Schomburg D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 2002;30(1):47–49.
  • Karp PD, Billington R, Holland TA, et al. Computational metabolomics operations at BioCyc.org. Metabolites. 2015;5(2):291–310.
  • Gu Y, Yang D, Zou J, et al. Systematic interpretation of comutated genes in large-scale cancer mutation profiles. Mol Cancer Ther. 2010;9(8):2186–2195.
  • Kanehisaa M, KEGG: GS. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
  • Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018;46:D633–D639.
  • Blanchard JL, Bulmore DL, Farmer AD, et al. PathDB: A second generation metabolic database; 2019. Available from: https://pdfs.semanticscholar.org/ecec/4ad703875624328c49f8debca05d5291b860.pdf
  • Gangrade D, Sawant G, Mehta A. Re-thinking drug discovery: in silico method. J Chem Pharmaceutical Res. 2016;8(8):1092–1099.
  • Klamt S, Stelling J, Ginkel M, et al. FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics. 2003;19(2):261–269.
  • Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5(1):93–121.
  • Kolisnychenko V. Engineering a reduced escherichia coli genome. Genome Res. 2002;12(4):640–647.
  • Rastogi S, Meena S, Bhattacharya A, et al. De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics. 2014;15(1):588–607.
  • Brandan CP, Basombrío MÁ. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool. Bioengineered. 2012;3(4):242–246.
  • Tang Q, Ma X, Mo C, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics. 2011;12(1):343.
  • Robertson G, Schein J, Chiu R, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 2010;7:909–912.
  • Weckwerth W. Integration of metabolomics and proteomics in molecular plant physiology coping with the complexity by data-dimensionality reduction. Physiol Plant. 2008;132:176–189.
  • Yamaguchi H, Miyazaki M. Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies. Bioengineered. 2015;6(1):1–4.
  • Huchelmann A, Boutry M, Hachez C. Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiol. 2017;175(1):6–22.
  • Yoon JM, Zhao L, Shanks JV. Metabolic engineering with plants for a sustainable biobased economy. Annu Rev Chem Biomol Eng. 2013;4:211–237.
  • Hou BK, Kim JS, Jun JH, et al. BioSilico: an integrated metabolic database system. Bioinformatics. 2004;20(17):3270–3272.
  • Radrich K, Tsuruoka Y, Dobson P, et al. Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst Biol. 2010;4:114.
  • Granata I, Troiano E, Sangiovanni M, et al. Integration of transcriptomic data in a genome-scale metabolic model to investigate the link between obesity and breast cancer. BMC Bioinformatics. 2019;20(4):162.
  • Jia Z. Barnes Mcogena: co-expressed gene-set enrichment analysis. R package version 1.18.0; 2019. Available from: https://github.com/zhilongjia/cogena
  • Lagunin A, Ivanov S, Rudik A, et al. DIGEP-Pred: web service for in silico prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics. 2013;29(16):2062–2063.
  • Laenen G, Ardeshirdavani A, Moreau Y, et al. Galahad: a web server for drug effect analysis from gene expression. Nucleic Acids Res. 2015;43:W208- W212.
  • Napolitano F, Carrella D, Mandriani B, et al. Gene2drug: a computational tool for pathway-based rational drug repositioning. Bioinformatics. 2018;34(9):1498–1505.
  • Brown AS, Kong SW, Kohane IS, et al. ksRepo: A generalized platform for computational drug repositioning. BMC Bioinformatics. 2016;17:78.
  • Carrella D, Napolitano F, Rispoli R, et al. Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics. 2014;30(12):1787–1788.
  • Luo H, Li M, Wang S, et al. Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics. 2018;34(11):1904–1912.
  • Navarro C, Martínez V, Blanco A, et al. ProphTools: general prioritization tools for heterogeneous biological networks. Gigascience. 2017;6(12):1–8.
  • Backman TW, Cao Y, Girke T. ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011;39:W486–91.
  • Ravikumar B, Alam Z, Peddinti G1, et al. C-SPADE: a web-tool for interactive analysis and visualization of drug screening experiments through compound-specific bioactivity dendrograms. Nucleic Acids Res. 2017;45(W1):W495–W500.
  • Cobanoglu MC1, Oltvai ZN1, Taylor DL1, et al. BalestraWeb: efficient online evaluation of drug-target interactions. Bioinformatics. 2015;31(1):131–133.
  • Yamanishi Y1, Kotera M2, Moriya Y3, et al. DINIES: drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res. 2014;42:W39–45.
  • Alaimo S, Bonnici V, Cancemi D, et al. DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference. BMC Syst Biol. 2015;9(3):S4.
  • Awale M, Reymond JL. The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J Cheminf [Internet]. Springer Science and Business Media LLC. 2017 21;9(1). doi:https://doi.org/10.1186/s13321-017-0199-x.
  • Cañada A, Capella-Gutierrez S, Rabal O, et al. LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes. Nucleic Acids Res. 2017;45(W1):W484–W489.
  • King ZA, Lu J, Dräger A, et al. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44:D515–D522.
  • Lee SY, Lee DY, Hong SH, et al. MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform. 2003;14:23–33.
  • Adrio J-L, Demain AL. Recombinant organisms for production of industrial products. Bioengineered Bugs. 2010;1(2):116–131.
  • Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioengineered Bugs. 2011;2(5):247–259.
  • Santos-Merino M, Singh AK, Ducat DC. New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front Bioeng Biotechnol. 2019;7:33.
  • Jadaun JS, Sangwan NS, Narnoliya LK, et al. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis. Physiol Plant. 2017a;159(4):381–400.
  • Bekker V, Dodd A, Brady D, et al. Tools for metabolic engineering in Streptomyces. Bioengineered. 2014;5(5):293–299.
  • Charlton Hume HK, Vidigal J, Carrondo MJT, et al. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng. 2018;116(4):919–935.
  • Sanzari I. Leone A and Ambrosone A. Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol. 2019;7:1–12.
  • Hemelaar SR, van der Laan KJ, Hinterding SR, et al. Generally applicable transformation protocols for fluorescent nanodiamond internalization into cells. Sci Rep. 2017;7:5862.
  • Cunningham FJ, Goh NS, Demirer GS, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 2018;36(9):882–897.
  • Martin-Ortigosa S, Wang K. Proteolistics: a biolistic method for intracellular delivery of proteins. Transgenic Res. 2014;23(5):743–756.
  • Senol Cali D, Kim JS, Ghose S, et al. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions. Brief Bioinform. 2018. DOI:https://doi.org/10.1093/bib/bby017
  • Bowden R, Davies RW, Heger A, et al. Sequencing of human genomes with nanopore technology. Nat Commun. 2019;10(1). doi:https://doi.org/10.1038/s41467-019-09637-5
  • Sanderson ND, Street TL, Foster D, et al. Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices. BMC Genomics. 2018;19(1). doi:https://doi.org/10.1186/s12864-018-5094-y
  • Sharma S, Jaiswal S, Duffy B, et al. Nanostructured materials for food applications: spectroscopy, microscopy and physical properties. Bioengineering. 2019 19;6(1):26.
  • Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng. 2019;3(1):011502.
  • Ferenz K, Zhang C. Nano-bio-imaging and therapeutic nanoparticles. J Nanosci Nanomed. 2018;2(1):19–20.
  • Siddiqui MH, Al-Whaibi MH, Firoz M, et al. Role of nanoparticles in plants. Nanotechnol Plant Sci. 2015;19–35. DOI:https://doi.org/10.1007/978-3-319-14502-0_2
  • Yah CS, Simate GS. Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU J Pharm Sci. 2015;23:43.
  • Lim EK, Kim T, Paik S, et al. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115:327394.
  • Ozkan B, Budama-Kilinc Y, Cakir-Koc R, et al. Application of an immunoglobulin Y-alkaline phosphatase bioconjugate as a diagnostic tool for influenza A virus. Bioengineered. 2019;10(1):33–42.
  • Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317325.
  • Chen K, Han H, Luo Z, et al. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors. Biosens Bioelectron. 2012;34:118–124.
  • Shikha S, Salafi T, Cheng J, et al. Versatile design and synthesis of nano-barcodes. Chem Soc Rev. 2017;46(22):7054–7093.
  • Lokugamage MP, Sago CD, Dahlman JE. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr Opin Biomed Eng. 2018;7:1–8.
  • Chaudhary B, Singh N, Pandey DK. Bioengineering of crop plants for improved tetrahydrofolate production. Bioengineered. 2018;9(1):152–158.
  • Lalor F, Fitzpatrick J, Sage C, et al. Sustainability in the biopharmaceutical industry: seeking a holistic perspective. Biotechnol Adv. 2019;37(5):698–707.
  • Baumgarten T, Ytterberg AJ, Zubarev RA, et al. Optimizing recombinant protein production in the Escherichia coli periplasm alleviates stress. Appl Environ Microbiol. 2018;84(12):e00270–18.
  • Routledge SJ, Mikaliunaite L, Patel A, et al. The synthesis of recombinant membrane proteins in yeast for structural studies. Methods. 2016;95:26–37.
  • Çelik E, Çalık P. Production of recombinant proteins by yeast cells. Biotechnol Adv. 2012;30(5):1108–1118.
  • Love KR, Dalvie NC, Love JC. The yeast stands alone: the future of protein biologic production. Curr Opin Biotech. 2018;53:50–58.
  • Vieira Gomes A, Souza Carmo T, Silva Carvalho L, et al. Comparison of yeasts as hosts for recombinant protein production. Microorganisms. 2018;6(2):38.
  • Gidijala L, Uthoff S, van Kampen SJ, et al. Presence of protein production enhancers results in significantly higher methanol-induced protein production in Pichia pastoris. Microb Cell Fact. 2018;17(1). DOI:https://doi.org/10.1186/s12934-018-0961-4
  • Prabakaran M, Kwang J. Recombinant baculovirus displayed vaccine. Bioengineered. 2014;5(1):45–48.
  • Black JB, Perez-Pinera P, Gersbach CA. Mammalian synthetic biology: engineering biological systems. Annu Rev Biomed Eng. 2017;19(1):249–277.
  • Mathur M, Xiang JS, Smolke CD. Mammalian synthetic biology for studying the cell. ‎J Cell Biol. 2016;216(1):73–82.
  • Sarsaiya S, Shi J, Chen J. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered. 2019;10(1):316–334.
  • Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun. 2019;10(1). DOI:https://doi.org/10.1038/s41467-019-09848-w
  • Chen YC, Yeh MK. Introductory Chapter: biopharmaceuticals. Biopharmaceuticals. 2018;19. doi:https://doi.org/10.5772/intechopen.79194.
  • Zhang YJ, An HJ. Technologies and strategies for bioanalysis of biopharmaceuticals. Bioanalysis. 2017;9(18):1343–1347.
  • Munshi A, Sharma V. Omics and edible vaccines. In: Omics Technologies and Bio-Engineering. Elsevier; 2018. p. 129–141. doi:https://doi.org/10.1016/b978-0-12-815870-8.00008-5.
  • Liu Y, Luo G, He D. Clinical importance of S100A9 in osteosarcoma development and as a diagnostic marker and therapeutic target. Bioengineered. 2019;10(1):133–141.
  • Johnson SR, Lange BM. Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotech. 2015;3. doi:https://doi.org/10.3389/fbioe.2015.00022.
  • Škorić D, Jocić S, Sakač Z, et al. Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can J Physiol Pharmacol. 2008;86:215–221.
  • Muñoz-Bertomeu J, Ros R, Arrillaga I, et al. Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metab Eng. 2008;10:166–177.
  • Voelker T, Worrell A, Anderson L, et al. Fatty-acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science. 1992;257:72–74.
  • Jain A, Sarsaiya S, Wu Q, et al. New insights and rethinking of cinnabar for chemical and its pharmacological dynamics. Bioengineered. 2019;10(1):353–364.
  • Guo M, Du R, Xie Z, et al. Using the promoters of MerR family proteins as “rheostats” to engineer whole-cell heavy metal biosensors with adjustable sensitivity. J Biol Eng. 2019;13(1). DOI:https://doi.org/10.1186/s13036-019-0202-3
  • Seicol BJ, Bejarano S, Behnke N, et al. Neuromodulation of metabolic functions: from pharmaceuticals to bioelectronics to biocircuits. J Biol Eng. 2019;13(1). DOI:https://doi.org/10.1186/s13036-019-0194-z
  • Zúñiga RA, Gutiérrez-González M, Collazo N, et al. Development of a new promoter to avoid the silencing of genes in the production of recombinant antibodies in chinese hamster ovary cells. J Biol Eng. 2019;13(1). DOI:https://doi.org/10.1186/s13036-019-0187-y
  • Healy CP, Deans TL. Genetic circuits to engineer tissues with alternative functions. J Biol Eng. 2019;13(1). DOI:https://doi.org/10.1186/s13036-019-0170-7
  • Wang B, Wang Z, Wang D, et al. krCRISPR: an easy and efficient strategy for generating conditional knockout of essential genes in cells. J Biol Eng. 2019;13(1). DOI:https://doi.org/10.1186/s13036-019-0150-y
  • Li J, Meng H, Wang Y. Synbiological systems for complex natural products biosynthesis. Synth Syst Biotechnol. 2016;1(4):221–229.