3,123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor

, ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 61-69 | Received 04 Oct 2019, Accepted 18 Nov 2019, Published online: 28 Dec 2019

References

  • Sathasivam R, Radhakrishnan R, Hashem A, et al. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2019;26:709–722.
  • Jiang Y, Zhang W, Wang J, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol. 2013;128:359–364.
  • Yu KL, Show PL, Ong HC, et al. Microalgae from wastewater treatment to biochar – feedstock preparation and conversion technologies. Energy Convers Manag. 2017;150:1–13.
  • de Godos I, Mendoza JL, Acien FG, et al. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol. 2014;153:307–314.
  • Mendoza JL, Granados MR, de Godos I, et al. Oxygen transfer and evolution in microalgal culture in open raceways. Bioresour Technol. 2013;137:188–195.
  • Cheng J, Huang Y, Feng J, et al. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour Technol. 2013;136:496–501.
  • Honda R, Boonnorat J, Chiemchaisri C, et al. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresour Technol. 2012;125:59–64.
  • Cheah WY, Ling TC, Show PL, et al. Cultivation in wastewaters for energy: a microalgae platform. Appl Energy. 2016;179:609–625.
  • Pegallapati AK, Nirmalakhandan N. Modeling algal growth in bubble columns under sparging with CO2-enriched air. Bioresour Technol. 2012;124:137–145.
  • Cheah WY, Show PL, Chang JS, et al. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol. 2015;184:190–201.
  • Kumar K, Banerjee D, Das D. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol. 2014;152:225–233.
  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9(3):165–177.
  • Pham HM, Kwak HS, Hong ME, et al. Development of an X-Shape airlift photobioreactor for increasing algal biomass and biodiesel production. Bioresour Technol. 2017;239:211–218.
  • Cheah WY, Show PL, Juan JC, et al. Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Convers Manag. 2018a;164:188–197.
  • Cheah WY, Show PL, Juan JC, et al. Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Convers Manag. 2018b;174:430–438.
  • Cheah WY, Show PL, Juan JC, et al. Waste to energy: the effects of Pseudomonas sp. on Chlorella sorokiniana biomass and lipid productions in palm oil mill effluent. Clean Technol Envir. 2018c;20(9):2037–2045.
  • Lee J, Cho DH, Ramanan R, et al. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol. 2013;131:195–201.
  • Su CH, Giridhar R, Chen CW, et al. A novel approach for medium formulation for growth of a microalga using motile intensity. Bioresour Technol. 2007;98(16):3012–3016.
  • Ho SH, Chen CY, Lee DJ, et al. Perspectives on microalgal CO2-emission mitigation systems–a review. Biotechnol Adv. 2011;29(2):189–198.
  • Huang Q, Jiang F, Wang L, et al. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering. 2017;3(3):318–329.
  • Lam MK, Lee KT, Mohamed AR. Current status and challenges on microalgae-based carbon capture. Int J Greenhouse Gas Control. 2012;10:456–469.
  • Peccia J, Haznedaroglu B, Gutierrez J, et al. Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol. 2013;31(3):134–138.
  • Whitton R, Le Mevel A, Pidou M, et al. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res. 2016;91:371–378.
  • Kumar A, Ergas S, Yuan X, et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 2010;28(7):371–380.
  • Xiong JQ, Kurade MB, Jeon BH. Can microalgae remove pharmaceutical contaminants from water?. Trends Biotechnol. 2018;36(1):30–44.
  • Cheng SY, Show PL, Lau BF, et al. New prospects for modified algae in heavy metal adsorption. Trends Biotechnol. 2019;37(11):1255–1268.
  • Ponraj M, Din MFM. Effect of light/dark cycle on biomass and lipid productivity by Chlorella pyrenoidosa using palm oil mill effluent (POME). J Sci Ind Res. 2013;72(11):703–706.
  • Nwuche CO, Ekpo DC, Eze CN, et al. Use of palm oil mill effluent as medium for cultivation of Chlorella sorokiniana. Br Biotechnol J. 2014;4(3):305.
  • Hadiyanto H, Nur M. Potential of palm oil mill effluent (POME) as medium growth of Chlorella sp for bioenergy production. Int J Env Bioenerg. 2012;3(2):67–74.
  • Nur MA, Hadiyanto H. Enhancement of chlorella vulgaris biomass cultivated in POME medium as biofuel feedstock under mixotrophic conditions. J Eng Sci Technol. 2015;47(5):487–497.
  • Huisman J, Thi NN, Karl DM, Sommeijer B. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature. 2006;439 (7074):322-325.