2,668
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Impact of magnetic immobilization on the cell physiology of green unicellular algae Chlorella vulgaris

, , , ORCID Icon, , , , & show all
Pages 141-153 | Received 04 Dec 2019, Accepted 06 Jan 2020, Published online: 29 Jan 2020

References

  • Kadar E, Rooks P, Lakey C, et al. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ. 2012;439:8–17.
  • Ansari F, Grigoriev P, Libor S, et al. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng. 2009;102(5):1505–1512.
  • Aruguete DM, Hochella MF. Bacteria-nanoparticle interactions and their environmental implications. Environ Chem. 2010;7(1):3–9.
  • Cerff M, Morweiser M, Dillschneider R, et al. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour Technol. 2012;118(2012):289–295.
  • Berovic M, Berlot M, Kralj S, et al. A new method for the rapid separation of magnetized yeast in sparkling wine. Biochem Eng J. 2014;88:77–84.
  • Fakhrullin RF, Shlykova LV, Zamaleeva AI, et al. Interfacing living unicellular algae cells with biocompatible polyelectrolyte‐stabilised magnetic nanoparticles. Macromol Biosci. 2010;10(10):1257–1264.
  • Prochazkova G, Safarik I, Branyik T. Harvesting microalgae with microwave synthesized magnetic microparticles. Bioresour Technol. 2013;130(2013):472–477.
  • Fraga-García P, Kubbutat P, Brammen M, et al. Bare iron oxide nanoparticles for magnetic harvesting of microalgae: from interaction behavior to process realization. Nanomaterials. 2018;8:5.
  • Raee MJ, Ebrahiminezhad A, Gholami A, et al. Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: an effective way to intensify downstream process. Sep Sci Technol. 2018;53(9):1–8.
  • Bharte S, Harvesting DK. Chlorella species using magnetic iron oxide nanoparticles. Phycol Res. 2019;67(2):128–133.
  • Egesa D, Chuck CJ, Plucinski P. Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustainable Chem Eng. 2017;6(1):991–999.
  • Kim I, Yang H-M, Park CW, et al. Removal of radioactive cesium from an aqueous solution via bioaccumulation by microalgae and magnetic separation. Sci Rep. 2019;9(1):10149.
  • Markeb AA, Llimós-Turet J, Ferrer I, et al. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 2019;159:490–500.
  • Priyadarshani I, Rath B. Commercial and industrial applications of micro algae–A review. J Algal Biomass Util. 2012;3(4):89–100.
  • Khatoon N, Pal R. Microalgae in biotechnological application: a commercial approach. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV, editors. Plant biology and biotechnology. India: Springer. 2015. p. 27–47.
  • Viriato C, da Silveira CB, de Souza MP. de Souza RdC. Revista Latinoamericana de Biotecnología Ambiental y Algal. 2019;10(1):1–12.
  • Nagappan S, Devendran S, Tsai P-C, et al. Potential of two-stage cultivation in microalgae biofuel production. Fuel. 2019;252:339–349.
  • Upadhyay A, Singh R, Singh JS, et al. Microalgae-assisted phyco-remediation and energy crisis solution: challenges and opportunity. In: Singh JS, Singh DP, editors. New and future developments in microbial biotechnology and bioengineering. UK: Elsevier. 2019. p. 295–307.
  • Chwalibog A, Sawosz E, Hotowy A, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine. 2010;5:1085–1094.
  • Sawosz E, Chwalibog A, Szeliga J, et al. Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine. 2010;5:631–637.
  • Muller K, Skepper JN, Posfai M, et al. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials. 2007;28(9):1629–1642.
  • Brunner TJ, Wick P, Manser P, et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol. 2006;40(14):4374–4381.
  • Oukarroum A, Bras S, Perreault F, et al. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf. 2012;78:80–85.
  • Barhoumi L, Dewez D. Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int. 2013;2013:647974.
  • Toh PY, Tai WY, Ahmad AL, et al. Toxicity of bare and surfaced functionalized iron oxide nanoparticles towards microalgae. Int J Phytoremediation. 2016;18(6):643–650.
  • Ghasemi Y, Mohagheghzadeh A, Ostovan Z, et al. Biotransformation of some monoterpenoid ketones by Chlorella vulgaris MCCS 012. Chem Nat Compd. 2010;46(5):734–737.
  • Macías-Sánchez M, Mantell C, Rodriguez M, et al. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta. 2009;77(3):948–952.
  • Lee SJ, Yoon B-D, Oh H-M. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech. 1998;12(7):553–556.
  • Elsey D, Jameson D, Raleigh B, et al. Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods. 2007;68(3):639–642.
  • Cao G, Zhang M, Miao J, et al. Effects of X-ray and carbon ion beam irradiation on membrane permeability and integrity in Saccharomyces cerevisiae cells. J Radiat Res. 2015;56(2):294–304.
  • Mizoguchi H, Hara S. Effect of fatty acid saturation in membrane lipid bilayers on simple diffusion in the presence of ethanol at high concentrations. J Ferment Bioeng. 1996;81(5):406–411.
  • Olson BJ, Markwell J. Assays for determination of protein concentration. Curr Protoc Protein Sci. 2007;48:1.
  • Ebrahiminezhad A, Varma V, Yang S, et al. Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: A step towards process intensification. Nanomaterials. 2015;6(1):1–9.
  • Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology. 2011;9:34.
  • Lin M, Tseng YH, Huang C-P. Interactions between nano-TiO2 particles and algal cells at moderate particle concentration. Front Chem Sci Eng. 2015;9(2):242–257.
  • Ma S, Zhou K, Yang K, et al. Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH. Environ Sci Technol. 2014;49(2):932–939.
  • Aruoja V, Pokhrel S, Sihtmäe M, et al. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano. 2015;2(6):630–644.
  • Ebrahiminezhad A, Varma V, Yang S, et al. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol. 2016;100(1):173–180.
  • Karlsson HL, Gustafsson J, Cronholm P, et al. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol Lett. 2009;188(2):112–118.
  • Ghorbani-Anarkooli M, Dabirian S, Moladoust H, et al. Comparison of MTT, trypan blue, and clonogenic assay, to determine the viability in human anaplastic thyroid cancer cell line. Tehran Univ Med J TUMS Publ. 2019;77(1):26–32.
  • Li J, Song L. Applicability of the MTT assay for measuring viability of cyanobacteria and algae, specifically for Microcystis aeruginosa (Chroococcales, Cyanobacteria). Phycologia. 2009;46(5):593–599.
  • Capasso JM, Cossı́o BR, Berl T, et al. A colorimetric assay for determination of cell viability in algal cultures. Biomol Eng. 2003;20(4–6):133–138.
  • Chen X, Zhu X, Li R, et al. Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open J Ecol. 2012;2(01):21–28.
  • Wang L, Wang M, Peng C, et al. Toxic effects of nano-CuO, micro-CuO and Cu2+ on Chlorella sp. J Environ Prot. 2013;4:86–91.
  • Franklin NM, Rogers NJ, Apte SC, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol. 2007;41(24):8484–8490.
  • Nazemidashtarjandi S, Farnoud AM. Membrane outer leaflet is the primary regulator of membrane damage induced by silica nanoparticles in vesicles and erythrocytes. Environ Sci Nano. 2019;6(4):1219–1232.
  • Berry CC, Wells S, Charles S, et al. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003;24(25):4551–4557.
  • Berry CC, Wells S, Charles S, et al. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials. 2004;25(23):5405–5413.
  • Hauser AK, Mitov MI, Daley EF, et al. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials. 2016;105:127–135.
  • Apopa PL, Qian Y, Shao R, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol. 2009;6:1.
  • Sun J, Wang S, Zhao D, et al. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol Toxicol. 2011;27(5):333–342.
  • Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015;39(8):881–890.