2,097
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Expression of chromogranin A-derived antifungal peptide CGA-N12 in Pichia pastoris

, , , , , & show all
Pages 318-327 | Received 24 Dec 2019, Accepted 07 Feb 2020, Published online: 12 Mar 2020

References

  • Cisneros JM, Perez-Moreno MA, Gil-Navarro MV. [The antibiotic policy. The infection committee and antimicrobial use]. Enferm Infecc Microbiol Clin. 2014;32:533–536.
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4:2.
  • Jiao K, Gao J, Zhou T, et al. Isolation and purification of a novel antimicrobial peptide from Porphyra yezoensis. J Food Biochem. 2019;43:e12864.
  • Shrestha A, Duwadi D, Jukosky J, et al. Cecropin-like antimicrobial peptide protects mice from lethal E.coli infection. PLoS One. 2019;14:e0220344.
  • Raheem N, Straus SK. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front Microbiol. 2019;10:2866.
  • Zeth K, Sancho-Vaello E. The human antimicrobial peptides dermcidin and LL-37 show novel distinct pathways in membrane interactions. Front Chem. 2017;5:86.
  • Xie Y, Fleming E, Chen JL, et al. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides. 2011;32:677–682.
  • Carlsson A, Engstrom P, Palva ET, et al. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun. 1991;59:3040–3045.
  • Mardirossian M, Perebaskine N, Benincasa M, et al. The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem Biol. 2018;25:530–539.e7.
  • Simon JP, Aunis D. Biochemistry of the chromogranin A protein family. Biochem J. 1989;262:1–13.
  • Eissa N, Hussein H, Hendy GN, et al. Chromogranin-A and its derived peptides and their pharmacological effects during intestinal inflammation. Biochem Pharmacol. 2018;152:315–326.
  • Lugardon K, Raffner R, Goumon Y, et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem. 2000;275:10745–10753.
  • Lugardon K, Chasserot-Golaz S, Kieffer AE, et al. Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47-66)-derived peptide. J Biol Chem. 2001;276:35875–35882.
  • Li RF, Lu YL, Lu YB, et al. Antiproliferative effect and characterization of a novel antifungal peptide derived from human Chromogranin A. Exp Ther Med. 2015;10:2289–2294.
  • Li RF, Yan XH, Lu YB, et al. Anti-candidal activity of a novel peptide derived from human chromogranin A and its mechanism of action against Candida krusei. Exp Ther Med. 2015;10:1768–1776.
  • Li R, Zhang L, Zhang H, et al. Protective effect of a novel antifungal peptide derived from human chromogranin a on the immunity of mice infected with Candida krusei. Exp Ther Med. 2017;13:2429–2434.
  • Li RF, Lu ZF, Sun YN, et al. Molecular design, structural analysis and antifungal activity of derivatives of peptide CGA-N46. Interdiscip Sci. 2016;8:319–326.
  • Kurjan J, Herskowitz I. Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. 1982;30:933–943.
  • Tajbakhsh M, Akhavan MM, Fallah F, et al. A recombinant snake cathelicidin derivative peptide: antibiofilm properties and expression in Escherichia coli. Biomolecules. 2018;8.
  • Tanhaieian A, Sekhavati MH, Ahmadi FS, et al. Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: its safety and molecular modeling evaluation. Microb Pathog. 2018;125:51–59.
  • Khademi M, Nazarian-Firouzabadi F, Ismaili A, et al. Targeting microbial pathogens by expression of new recombinant dermaseptin peptides in tobacco. Microbiologyopen. 2019;8:e837.
  • Sun J, Jiang J, Liu L, et al. Expression of the hybrid antimicrobial peptide lactoferrin-lysozyme in Pichia pastoris. Biotechnol Appl Biochem. 2019;66:202–208.
  • Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000;24:45–66.
  • Fuentes-Garibay JA, Aguilar CN, Rodriguez-Herrera R, et al. Tannase sequence from a xerophilic Aspergillus niger Strain and production of the enzyme in Pichia pastoris. Mol Biotechnol. 2015;57:439–447.
  • Huang Y, Long Y, Li S, et al. Investigation on the processing and improving the cleavage efficiency of furin cleavage sites in Pichia pastoris. Microb Cell Fact. 2018;17:172.
  • Huang Y, Zhen B, Lin Y, et al. Expression of codon optimized human bone morphogenetic protein 4 in Pichia pastoris. Biotechnol Appl Biochem. 2014;61:175–183.
  • Cheng KT, Wu CL, Yip BS, et al. High level expression and purification of the clinically active antimicrobial peptide P-113 in Escherichia coli. Molecules. 2018;23:800.
  • Naider F, Jelicks LA, Becker JM, et al. Biologically significant conformation of the Saccharomyces cerevisiae alpha-factor. Biopolymers. 1989;28:487–497.
  • Kuberl A, Schneider J, Thallinger GG, et al. High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol. 2011;154:312–320.