12,806
Views
141
CrossRef citations to date
0
Altmetric
Review

Advanced in developmental organic and inorganic nanomaterial: a review

, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 328-355 | Received 12 Jan 2020, Accepted 17 Feb 2020, Published online: 06 Mar 2020

References

  • Bianco A, Cheng HM, Enoki T, et al. (2013). All in the graphene family–a recommended nomenclature for two-dimensional carbon materials.Carbon. 2013; 65: 1-6
  • Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. 2006;35(3):209–217.
  • Bogani L, Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nanosci Technol. 2010;7(3):194–201.
  • Awade MKL. Emerging trends of nanotechnology in biomedical engineering. Int J Electron Comm Eng Technol. 2010;1(1):25–32.
  • Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Pro Mater Sci. 2012;57(4):724–803.
  • Grill L, Dyer M, Lafferentz L, et al. Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol. 2007;2(11):687.
  • Sanchez C, Belleville P, Popall M, et al. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40(2):696–753.
  • Dong H, Hu W. Organic nanomaterials. In: Robert Vajtai, editor. Springer handbook of nanomaterials. Berlin, Heidelberg: Springer; 2013. p. 905–940.
  • Stark WJ, Stoessel PR, Wohlleben W, et al. Industrial applications of nanoparticles. Chem Soc Rev. 2015;44(16):5793–5805.
  • Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci. 2007;32(3):352–418.
  • Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharm Res. 2006;23(1):1–30.
  • Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc. 2012;134(38):15607–15620.
  • Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583–592.
  • Advincula RC. Hybrid organic–inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Trans. 2006;23:2778–2784.
  • Walling M, Novak J, Shepard JR. Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 2009;10(2):441–491.
  • Wang YA, Li JJ, Chen H, et al. Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc. 2002;124(10):2293–2298.
  • Locklin J, Patton D, Deng S, et al. Conjugated oligothiophene-dendron-capped CdSe nanoparticles: synthesis and energy transfer. Chem Mater. 2004;16(24):5187–5193.
  • Ma CQ, Mena‐Osteritz E, Debaerdemaeker T, et al. Functionalized 3D oligothiophene dendrons and dendrimers—novel macromolecules for organic electronics. Angew Chem. 2007;46(10):1679–1683.
  • Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014;114(12):6130–6178.
  • Pantic I. Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches. Rev Adv Mater Sci. 2010;26:67–73.
  • Valko MMHCM, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–1208.
  • Kolosnjaj-Tabi J, Javed Y, Lartigue L, et al. The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano. 2015;9(8):7925–7939.
  • Berry CC. Possible exploitation of magnetic nanoparticle–cell interaction for biomedical applications. J Mater Chem. 2005;15(5):543–547.
  • Fang C, Zhang M. Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem. 2009;19(35):6258–6266.
  • Kim BH, Lee N, Kim H, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133(32):12624–12631.
  • Pallas-Areny R, Webster JG. Sensors and signal conditioning. New York (NY): John Wiley & Sons; 2012.
  • Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1–2):24–46.
  • Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–1265.
  • Cheng W, Haedicke IE, Nofiele J, et al. Complementary strategies for developing Gd-free high-field T 1 MRI contrast agents based on MnIII porphyrins. J Med Chem. 2014;57(2):516–520.
  • Daldrup-Link HE, Rudelius M, Oostendorp RA, et al. Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology. 2003;228(3):760–767.
  • Gallo J, Long NJ, Aboagye EO. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev. 2013;42(19):7816–7833.
  • Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv. 2009;27(4):502–520.
  • Lee JH, Huh YM, Jun YW, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2007;13(1):95.
  • Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–10689.
  • Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Invest Drugs. 2009;10(6):550. London, England: 2000.
  • Kalambur VS, Longmire EK, Bischof JC. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir. 2007;23(24):12329–12336.
  • Tay ZW, Chandrasekharan P, Chiu-Lam A, et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano. 2018;12(4):3699–3713.
  • Berry CC. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2009;42(22):224003.
  • Medeiros SF, Santos AM, Fessi H, et al. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2011;403(1–2):139–161.
  • Huang J, Li Y, Orza A, et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image‐guided approaches. Adv Funct Mater. 2016;26(22):3818–3836.
  • Natarajan A, Sundrarajan R, DeNardo SJ. Magnetic nanoparticles for Cancer imaging and therapy. In Kumar CSSR, editor. Nanotechnologies for the Life Sciences; 2011.
  • Vekris A, Maurange C, Moonen C, et al. Control of transgene expression using local hyperthermia in combination with a heat‐sensitive promoter. J Gene Med. 2000;2(2):89–96.
  • Angelakeris M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim Biophys Acta. 2017;1861(6):1642–1651.
  • Lunnoo T, Puangmali T. Capture efficiency of biocompatible magnetic nanoparticles in arterial flow: A computer simulation for magnetic drug targeting. Nanoscale Res Lett. 2015;10(1):426.
  • Lübbe AS, Bergemann C, Brock J, et al. Physiological aspects in magnetic drug-targeting. J Magn Magn Mater. 1999;194(1–3):149–155.
  • Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147-166.
  • Mykhaylyk O, Antequera YS, Vlaskou D, et al. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc. 2007;2(10):2391.
  • Dietz HC (1998). U.S. Patent No. 5,814,500. Washington, DC: U.S. Patent and Trademark Office.
  • Arsianti M, Lim M, Marquis CP, et al. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir. 2010;26(10):7314–7326.
  • Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12(5):329.
  • Zuckerman JE, Choi CHJ, Han H, et al. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc Nat Acad Sci. 2012;109(8):3137–3142.
  • Min KA, Shin MC, Yu F, et al. Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano. 2013;7(3):2161–2171.
  • Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 2014;4(9):872.
  • Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci. 2017;249:386–399.
  • Jiang K, Smith DA, Pinchuk A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J Phys Chem C. 2013;117(51):27073–27080.
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782.
  • Padmanabhan P, Kumar A, Kumar S, et al. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1–16.
  • Chan J, Aoki C, Pickel VM. Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods. 1990;33(2–3):113–127.
  • Pol ANVD. Neuronal imaging with colloidal gold. J Microsc. 1989;155(1):27–59.
  • Cho EC, Xie J, Wurm PA, et al. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009;9(3):1080–1084.
  • Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9(Suppl 1):51.
  • Brewer SH, Glomm WR, Johnson MC, et al. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21(20):9303–9307.
  • Oh E, Delehanty JB, Sapsford KE, et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano. 2011;5(8):6434–6448.
  • Saha K, Agasti SS, Kim C, et al. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112(5):2739–2779.
  • Lu M, Hong L, Liang Y, et al. Enhancement of gold nanoparticle coupling with a 2D plasmonic crystal at high incidence angles. Anal Chem. 2018;90(11):6683–6692.
  • Zhao W, Brook MA, Li Y. Design of gold nanoparticle‐based colorimetric biosensing assays. ChemBioChem. 2008;9(15):2363–2371.
  • De Silva AP, Gunaratne HN, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev. 1997;97(5):1515–1566.
  • Berry CC. Applications of inorganic nanoparticles for biotechnology. In Jesus M. de la Fuente, V. Grazu, editor. Frontiers of nanoscience. Vol. 4. Elsevier; 2012. p. 159–180.
  • Ruddy DA, Johnson JC, Smith ER, et al. Size and bandgap control in the solution-phase synthesis of near-infrared-emitting germanium nanocrystals. ACS Nano. 2010;4(12):7459–7466.
  • Yildiz I, Deniz E, McCaughan B, et al. Hydrophilic CdSe− ZnS core− shell quantum dots with reactive functional groups on their surface. Langmuir. 2010;26(13):11503–11511.
  • Breger J, Delehanty JB, Medintz IL. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(2):131–151.
  • Sun C (2016). Microfluidic technology for cellular analysis and molecular biotechnology (Doctoral dissertation, Virginia Tech).
  • Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev. 2008;37(9):2028–2045.
  • Renner M, Lacor PN, Velasco PT, et al. Deleterious effects of amyloid β oligomers acting as an extracellular scaffold for mGluR5. Neuron. 2010;66(5):739–754.
  • Rurack K, Spieles M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600− 1000 nm. Anal Chem. 2011;83(4):1232–1242.
  • Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001;2(11):764–774.
  • Tan M, Wang Y, Song X, et al. Nanomaterials as therapeutic/imaging agent delivery vehicles for tumor targeting theranostics. Nanomater Tumor Targeting Theranostics. 2016;1–42.
  • Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol. 2010;14(1):71–79.
  • Gao X, Yang L, Petros JA, et al. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16(1):63–72.
  • de Fougerolles A, Vornlocher HP, Maraganore J, et al. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443.
  • Gautam A, Kapoor P, Chaudhary K, et al., Source Drug Discovery Consortium. Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics. Curr Med Chem. 2014;21(21):2367–2391.
  • Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev. 2006;106(3):1105–1136.
  • Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon. 2011;49(2):605–609.
  • Fabbro A,Cellot G, Prato M, et al. Interfacing neurons with carbon nanotubes: (re) engineering neuronal signaling. Progress in Brain Research. 2011;194:241–252.
  • Martinelli V, Cellot G, Toma FM, et al. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett. 2012;12(4):1831–1838.
  • Abdul Razak M, Boggupalli DP, Viswanath B. Drug-loaded nanocarriers in tumor targeted drug delivery. Curr Biotechnol. 2015;4(3):319–344.
  • Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813.
  • Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 2010;28(11):570–579.
  • De Laporte L, Rea JC, Shea LD. Design of modular non-viral gene therapy vectors. Biomaterials. 2006;27(7):947–954.
  • Kim MH, Na HK, Kim YK, et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano. 2011;5(5):3568–3576.
  • Kobiler O, Drayman N, Butin-Israeli V, et al. Virus strategies for passing the nuclear envelope barrier. Nucleus. 2012;3(6):526–539.
  • Zakharova L, Pashirova T, Kashapov R, et al. Drug delivery mediated by confined nanosystems: structure-activity relations and factors responsible for the efficacy of formulations. In: Andronescu E, Grumezescu AM, editor. Nanostructures for drug delivery. Bucharest (Romania): Elsevier; 2017. p. 749–806.
  • El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release. 2004;94(1):1–14.
  • Shi X, Sanedrin RJ, Zhou F. Structural characterization of multilayered DNA and polylysine composite films: influence of ionic strength of DNA solutions on the extent of DNA incorporation. J Phys Chem A. 2002;106(6):1173–1180.
  • Uz M, Altinkaya SA, Mallapragada SK. Stimuli responsive polymer-based strategies for polynucleotide delivery. J Mater Res. 2017;32(15):2930–2953.
  • Li Z, Barnes JC, Bosoy A, et al. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41(7):2590–2605.
  • Xu J, Ganesh S, Amiji M. Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. Int J Pharm. 2012;427(1):21–34.
  • Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006;58(4):467–486.
  • Khatak S, Dureja H. Recent techniques and patents on solid lipid nanoparticles as novel carrier for drug delivery. Recent Pat Nanotechnol. 2015;9(3):150–177.
  • Krishnamoorthy M (2016). Developing cationic nanoparticles for gene delivery (Doctoral dissertation, Queen Mary University of London).
  • Vonarbourg A, Passirani C, Desigaux L, et al. The encapsulation of DNA molecules within biomimetic lipid nanocapsules. Biomaterials. 2009;30(18):3197–3204.
  • Zahr AS, Davis CA, Pishko MV. Macrophage uptake of core− shell nanoparticles surface modified with poly (ethylene glycol). Langmuir. 2006;22(19):8178–8185.
  • Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Sci Technol Adv Mater. 2010;11(1):014104.
  • Nanjwade BK, Bechra HM, Derkar GK, et al. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009;38(3):185–196.
  • Dufes C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57(15):2177–2202.
  • Esfand R, Tomalia DA. Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6(8):427–436.
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102–115.
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157(2):168–182.
  • Zhang J, Chua LS, Lynn DM. Multilayered thin films that sustain the release of functional DNA under physiological conditions. Langmuir. 2004;20(19):8015–8021.
  • Verma C, Janghel A, Deo S, et al. A comprehensive advancement on nanomedicines along with its various biomedical applications. Res J Pharm Technol. 2015;8(7):945–957.
  • Feracci H, Gutierrez BS, Hempel W, et al. Organic nanoparticles. In: Jesus M. de la Fuente, Grazu V, editor. Frontiers of nanoscience. Vol. 4. Spain: Elsevier; 2012. p. 197–230.
  • Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull. 2010;58(11):1423–1430.
  • Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70(3):399–421.
  • Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release. 2013;172(3):1075–1091.
  • Kaul G, Amiji M. Biodistribution and targeting potential of poly (ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target. 2004;12(9–10):585–591.
  • Kaul G, Amiji M (2004). Biodistribution and tumor-targeting potential of poly (Ethylene Glycol)-modified gelatin nanoparticles. MRS Online Proceedings Library Archive, 845.
  • Xu L, Pirollo KF, Chang EH. Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J Control Release. 2001;74(1–3):115–128.
  • Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev. 2003;55(2):199–215.
  • Oba M, Aoyagi K, Miyata K, et al. Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol Pharm. 2008;5(6):1080–1092.
  • Chen MC, Mi FL, Liao ZX, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev. 2013;65(6):865–879.
  • Kou L, Sun J, Zhai Y, et al. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8(1):1–10.
  • Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol. 2003;62(1):27–34.
  • Swami R, Singh I, Khan W, et al. Diseases originate and terminate by genes: unraveling nonviral gene delivery. Drug Deliv Transl Res. 2013;3(6):593–610.
  • De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):292–307.
  • Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.
  • Liu R, Wu P, Yang L, et al. Inductively coupled plasma mass spectrometry‐based immunoassay: A review. Mass Spectrom Rev. 2014;33(5):373–393.
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181.
  • Sittampalam G (1982). PREPARATION AND PROPERTIES OF ANTIGEN-OR ANTIBODY-ENZYME CONJUGATES EMPLOYED IN ENZYME IMMUNOASSAYS.
  • Paschinger K, Rendić D, Wilson IB. Revealing the anti-HRP epitope in Drosophila and Caenorhabditis. Glycoconj J. 2009;26(3):385–395.
  • Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260(6):3440–3450.
  • Koutsoumpeli E, Tiede C, Murray J, et al. Antibody mimetics for the detection of small organic compounds using a quartz crystal microbalance. Anal Chem. 2017;89(5):3051–3058.
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543.
  • Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: a review. Arab J Chem. 2019;12(8):3576-3600.
  • Rodriguez-Docampo Z, Pascu SI, Kubik S, et al. Noncovalent interactions within a synthetic receptor can reinforce guest binding. J Am Chem Soc. 2006;128(34):11206–11210.
  • Niemeyer CM, Sano T, Smith CL, et al. Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA—streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 1994;22(25):5530–5539.
  • Wakefield DH, Rozema DB, Wolff JA, et al. (2006). U.S. Patent No. 7,094,605. Washington, DC: U.S. Patent and Trademark Office.
  • Shipunova VO, Zelepukin IV, Stremovskiy OA, et al. Versatile platform for nanoparticle surface bioengineering based on SiO2-binding peptide and proteinaceous barnase* barstar interface. ACS Appl Mater Interfaces. 2018;10(20):17437–17447.
  • Zhang Y, Heller A. Reduction of the nonspecific binding of a target antibody and of its enzyme-labeled detection probe enabling electrochemical immunoassay of an antibody through the 7 pg/mL− 100 ng/mL (40 fM− 400 pM) range. Anal Chem. 2005;77(23):7758–7762.
  • Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Ann Rev Anal Chem. 2009;2:241–264.
  • Dhawan S. Design and construction of novel molecular conjugates for signal amplification (II): use of multivalent polystyrene microparticles and lysine peptide chains to generate immunoglobulin–horseradish peroxidase conjugates. Peptides. 2002;23(12):2099–2110.
  • Kim S, Pyo HB, Ko SH, et al. Fabrication of anionic sulfate-functionalized nanoparticles as an immunosensor by protein immobilization. Langmuir. 2010;26(10):7355–7364.
  • Fernando LP, Kandel PK, Yu J, et al. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules. 2010;11(10):2675–2682.
  • Trau D, Yang W, Seydack M, et al. Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem. 2002;74(21):5480–5486.
  • Chan CPY, Bruemmel Y, Seydack M, et al. Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem. 2004;76(13):3638–3645.
  • Origoni M, Cristoforoni P, Carminati G, et al. E6/E7 mRNA testing for human papilloma virus-induced high-grade cervical intraepithelial disease (CIN2/CIN3): a promising perspective. Ecancermedicalscience. 2015;9:533.
  • Ho JAA, Wu LC, Huang MR, et al. Application of ganglioside-sensitized liposomes in a flow injection immunoanalytical system for the determination of cholera toxin. Anal Chem. 2007;79(1):246–250.
  • Théry M, Racine V, Piel M, et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Nat Acad Sci. 2006;103(52):19771–19776.
  • Hu G, Place AT, Minshall RD. Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact. 2008;171(2):177–189.
  • Lambert M, Padilla F, Mège RM. Immobilized dimers of N-cadherin-Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside-in and inside-out signals. J Cell Sci. 2000;113(12):2207–2219.
  • Morini MF (2014). VE-cadherin orchestrates epigenetic modifications aimed at endothelial stabilisation.
  • Van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–3788.
  • Sanchez‐Martin RM, Muzerelle M, Chitkul N, et al. Bead‐based cellular analysis, sorting and multiplexing. ChemBioChem. 2005;6(8):1341–1345.
  • Zimmerman LB, De Jesús-Escobar JM, Harland RM. The spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 1996;86(4):599–606.
  • Van Nhieu GT, Ben‐Ze’ev A, Sansonetti PJ. Modulation of bacterial entry into epithelial cells by association between vinculin and the shigella IpaA invasin. Embo J. 1997;16(10):2717–2729.
  • Kienberger F, Ebner A, Gruber HJ, et al. Molecular recognition imaging and force spectroscopy of single biomolecules. Acc Chem Res. 2006;39(1):29–36.
  • Cassano AG, Anderson VE, Harris ME. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects. Biopolymers. 2004;73(1):110–129.
  • Schumakovitch I, Grange W, Strunz T, et al. Temperature dependence of unbinding forces between complementary DNA strands. Biophys J. 2002;82(1):517–521.
  • Camesano TA, Liu Y, Datta M. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv Water Res. 2007;30(6–7):1470–1491.