2,221
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Improved production of recombinant Rhizomucor miehei lipase by coexpressing protein folding chaperones in Pichia pastoris, which triggered ER stress

, , , , , , & show all
Pages 375-385 | Received 02 Jan 2020, Accepted 14 Feb 2020, Published online: 16 Mar 2020

References

  • Huang JJ, Xia J, Yang Z, et al. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel. Biotechnol Biofuels. 2014;7(1):111. PMID:25788976.
  • Alca´ntara AR, de Fuentes IE, Sinisterra JV. Rhizomucor miehei lipase as the catalyst in the resolution of chiral compounds: an overview. Chem Phys Lipids. 1998;93(1–2):169–184.
  • Araújo MEMB, Campos PRB, Noso TM, et al. Response surface modelling of the production of structured lipids from soybean oil using Rhizomucor miehei lipase. Food Chem. 2011;127(1):28–33.
  • Boel E, Huge-Jensen B, Christensen M, et al. Rhizomucor miehei triglyceride lipase is synthesized as a precursor. Lipids. 1988;23(7):701–706. PMID: 3419283.
  • Moroz OV, Blagova E, Reiser V, et al. Novel inhibitory function of the Rhizomucor miehei lipase propeptide and three-dimensional structures of its complexes with the enzyme. ACS Omega. 2019;4(6):9964–9975. PMID: 31460089.
  • Derewenda U, Swenson L, Wei Y, et al. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola Lanuginosa and Rhizopus Delemar. J Lipid Res. 1994;35(3):524–534. PMID: 8014587.
  • Huang DF, Han SY, Han ZL, et al. Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichia pastoris whole cells in an isooctane system. Biochem Eng J. 2012;63:10–14.
  • Yang Z, Zhang Z. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol Adv. 2018;36(1):182–195. PMID: 29129652.
  • Torres P, Saa PA, Albiol J, et al. Contextualized genome-scale model unveils high-order metabolic effects of the specific growth rate and oxygenation level in recombinant Pichia pastoris. Metab Eng Commun. 2019;9:e00103. PMID: 31720218.
  • Huang J, Yang Z, Guan F, et al. A novel mono- and diacylglycerol lipase highly expressed in Pichia pastoris and its application for food emulsifier preparation. Process Biochem. 2013;48(12):1899–1904.
  • Prielhofer R, Maurer M, Klein J, et al. Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb Cell Fact. 2013;12(1):5. PMID: 23347568.
  • Xiang L, Wang Q, Zhou Y, et al. High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in Pichia pastoris. Microbiol Res. 2016;193:48–56. PMID: 27825486.
  • Yu M, Wen S, Tan T. Enhancing production of Yarrowia lipolytica lipase Lip2 in Pichia pastoris. Eng Life Sci. 2010;10(5):458–464.
  • Mellitzer A, Ruth C, Gustafsson C, et al. Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. J Biotechnol. 2014;191:187–195. PMID: 25193713.
  • Werten MWT, Eggink G, Stuart MAC, et al. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv. 2019;31(5):642–666. PMID: 30902728.
  • Zhang Y. Secreted gene expression and fermentation optimization of Rhizomucor miehei lipase in Pichia pastoris. J Anhui Agric Sci. 2010;38(35):19910–19913.
  • He D, Luo W, Wang Z, et al. Combined use of GAP and AOX1 promoters and optimization of culture conditions to enhance expression of Rhizomucor miehei lipase. J Ind Microbiol Biotechnol. 2015;42(8):1175–1182. PMID: 26013734.
  • Luo W, Wang ZY, Miao CL, et al. Expression of lipase gene from Rhizomucor miehei in Pichia pastoris and properties of lipase. Chem Ind For Prod. 2016;36:135–140.
  • Cai H, Zhang T, Zhao M, et al. Co-expression of lipase isozymes for enhanced expression in Pichia pastoris. Lett Appl Microbiol. 2017;65:335–342. PMID: 28763110.
  • Gasser B, Maurer M, Rautio J, et al. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics. 2007;8(1):179. PMID: 17578563.
  • Puxbaum V, Mattanovich D, Gasser B, et al. The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol. 2015;99:2925–2938. PMID: 25722021.
  • Mai CT, Le QG, Ishiwata-Kimata Y, et al. 4-Phenylbutyrate suppresses the unfolded protein response without restoring protein folding in Saccharomyces cerevisiae. FEMS Yeast Res. 2018;18(2):foy016. PMID:29452364.
  • Delic M, Valli M, Graf AB, et al. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev. 2013;37(6):872–914. . PMID:23480475.
  • Han ZG, Zhang JW, Jiang XF, et al. Gene dosage and coexpression with endoplasmic reticulum secretion-associated factors improved the secretory expression of α-galactosidase. Protein Expr Purif. 2019;153:83–91. PMID: 30107237.
  • Wang JR, Wu ZZ, Zhang TY, et al. High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies. 3 Biotech. 2019;9(2):62. PMID: 30729086.
  • Zhu T, Guo M, Tang Z, et al. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J Appl Microbiol. 2009;107:954–963. PMID: 19486418.
  • Gasser B, Sauer M, Maurer M, et al. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol. 2007;73(20):6499–6507. PMID: 17766460.
  • Wu M, Liu W, Yang G, et al. Engineering of a Pichia pastoris expression system for high-level secretion of HSA/GH fusion protein. Appl Biochem Biotechnol. 2014;172(5):2400–2411. PMID: 24390856.
  • Huang JJ, Wang Q, Bu W, et al. Different construction strategies affected on the physiology of Pichia pastoris strains highly expressed lipase by transcriptional analysis of key genes. Bioengineered. 2019;10(1):150–161. PMID: 31079540.
  • Yang J, Lu ZP, Chen JW, et al. Effect of cooperation of chaperones and gene dosage on the expression of porcine PGLYRP-1 in Pichia pastoris. Appl Microbiol Biotechnol. 2016;100(12):5453–5465. PMID: 26883349.
  • Hu H, Gao J, He J, et al. Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris. PLoS One. 2013;8:3.
  • Wang Q, Liu JX, Zhang WJ, et al. Expression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. FEMS Microbiol Lett. 2013;347(2):163–172. PMID: 23937222.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. PMID: 942051.
  • Peng Q, Zhang X, Shang M, et al. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea. Microb Cell Fact. 2011;10(1):95. PMID: 22067554.
  • Palomares LA, Estrada-Mondaca S, Ramirez OT. Production of recombinant proteins: challenges and solutions. Methods Mol Biol. 2004;267:15–52. PMID: 15269414.
  • Idiris A, Tohda H, Kumagai H, et al. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol. 2010;86(2):403–417. PMID: 15269414.
  • Iwaki T, Hosomi A, Tokudomi S, et al. Vacuolar protein sorting receptor in Schizosaccharomyces pombe. Microbiology. 2006;152(5):1523–1532. PMID: 16622069.
  • Jønson L, Rehfeld JF, Johnsen AH. Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae. Eur J Biochem. 2004;271(23–24):4788–4797. PMID: 15606766.
  • Reid DW, Chen Q, Tay AS, et al. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell. 2014;158(6):1362–1374. PMID: 25215492.
  • Frand AR, Kaiser CA. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell. 1999;4(4):469–477. PMID: 10549279.
  • Appenzeller-Herzog C, Riemer J, Zito E, et al. Disulphide production by Ero1a–PDI relay is rapid and effectively regulated. Embo J. 2010;29(19):3318–3329.
  • Inaba K, Masui S, Iida H, et al. Crystal structures of human Ero1a reveal the mechanisms of regulated and targeted oxidation of PDI. Embo J. 2010;29(19):3330–3343.
  • Wang XD, Jiang T, Yu XW, et al. Effects of UPR and ERAD pathway on the prolyl endopeptidase production in Pichia pastoris by controlling of nitrogen source. J Ind Microbiol Biotechnol. 2017;44(7):1053–1063. PMID: 28353181.