2,211
Views
15
CrossRef citations to date
0
Altmetric
Special Issue for International conference IBCC-2020

Study on the effect of synergy effect between the mixed cultures on the power generation of microbial fuel cells

, , , , &
Pages 844-854 | Received 19 Nov 2020, Accepted 26 Jan 2021, Published online: 08 Mar 2021

References

  • Choudhury P, Uday U, Bandyopdhyay T, et al. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered. 2017;8(5):471–487.
  • Chaturvedi V, Verma P. Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources Bioprocess. 2016;3(1):1–14.
  • Liu J, Zhao N, Ge L. Research progress on electron transfer mechanism and its influencing factors on microbial fuel cells anode exoelectrogens. Environ Chem. 2019;38(8):1–12.
  • Dao-Bo L, Edwards Marcus J, Blake Anthony W, et al. His/Met heme ligation in the PioA outer membrane cytochrome enabling light-driven extracellular electron transfer by Rhodopseudomonas palustris TIE-1. Nanotechnology. 2020;31(35):354002.
  • Zhao Y, Watanabe K Prof, Nakamura R, et al. Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells. Chem A Eur J. 2010;16(17):4982–4985.
  • Kartik A, Vijayakumar BS. Screening sediment samples used as anolytes in microbial fuel cells for microbial electron transfer activity using DREAM assay. Biotechnol Lett. 2019;41(8–9):979–985.
  • Song R, Wu Y, Lin Z. Coating individual bacterial cells with in situ formed polypyrrole. Living Cond. 2017;56(35):10516–10520.
  • Ni J, Chen X, Wang X, et al. Research progress of electrogenic microorganisms in microbial fuel cell. Modern Chem Ind. 2017;37(7):46–49.
  • Reguera G, Nevin KP, Nicoll JS. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol. 2006;72(11):7345–7348.
  • Mohammadi Moradian J, Xu Z-A, Shi Y-T, et al. Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of Cystobasidium slooffiae. Int J Energy Res. 2020;44(1):325–333.
  • Rabaey K, Boon N, Hofte M. Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol. 2005;39(9):3401–3408.
  • Fathey R, Gomaa M, Ali E. Neutral red as a mediator for the enhancement of electricity production using a domestic wastewater double chamber microbial fuel cell. Ann Microbiol. 2016;66(2):695–702.
  • Tingtao Z, Lixia Z, Ping G. The mechanism and characteristics of electricity production in compound strains microbial fuel cells. J App Environ Biol. 2012;18(3):465–470.
  • Rui L, Tursun H, Xiaoshu H, et al. Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage. Bioresour Technol. 2017;241:439–447.
  • Park DH, Zeukus JG. Impact of electrode composition on electricity generation in a single compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol. 2002;59:58–61.
  • Raghavulu SV, Modestra JA, Amulya K, et al. Relative effect of bioaugmentation with electrochemically active and nonactive bacteria on bioelectrogenesis in microbial fuel cell. Bioresour Technol. 2013;146:696–703.
  • Yujin C, Hui M, Wei L. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact. 2019;18:18–39.
  • Islam MA, Ethiraj B, Cheng CK, et al. An insight of synergy between Pseudomonas aeruginosa and Klebsiella variicola in microbial fuel cell. ACS Sustain Chem Eng. 2018;6:4130-4137.
  • Islam MA, Woon CW, Ethiraj B, et al. Correlation of power generation with time-course biofilm architecture using Klebsiella variicola in dual chamber microbial fuel cell. Int J Hydrogen Energy. 2017;42:25933–25941.
  • Kimberley D, Duarte Z, Kwon Y. In situ carbon felt anode modification via codeveloping Saccharomyces cerevisiae living-template titanium dioxide nanoclusters in a yeast-based microbial fuel cell. J Power Sources. 2020;228651:474.
  • Sugnaux M, Mermoud S, Costa AFD. Probing electron transfer with Escherichia coli: A method to examine exoelectronics in microbial fuel cell type systems. Bioresour Technol. 2013;148(8):567–573.
  • Qiao Y, Qiao YJ, Zou L. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresour Technol. 2015;198:1–6.
  • Feng L, Xingjuan A, Deguang W. Engineering microbial consortia for high-performance cellulosic hydrolyzates-fed microbial fuel cells. Front Microbiol. 2019;10:409.
  • Kokabian B, Smith R, Brooks JP. Bioelectricity production in photosynthetic microbial desalination cells under different flow configurations. J Ind Eng Chem. 2018;58:131–139.
  • Raghavulu SV, Goud RK, Sarma PN, et al. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresour Technol. 2011;102:2751–2757.
  • Ojima, Y, Kawaguchi T, Fukui S, et al. Promoted performance of microbial fuel cells using Escherichia coli cells with multiple-knockout of central metabolism genes. Bioprocess Biosyst Eng. 2019;43(2):323–332.
  • Qian Z, YANG L, XIE B. Isolation and identification of a simultaneous electricity production and denitrification strain in a microbial fuel cell with biocathode and its characteristics. Chin J Environ Eng. 2019;13(8):1986–1994.
  • Nimje VR, Chen CY, Chen CC, et al. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J Power Sources. 2009;190(2):258–263.
  • You T, Liu JH, Liang RB, et al. Longer survival time of Pseudomonas aeruginosa could increase electricity production of biofuel cells. J Bioeng. 2017;33(4):601–608.
  • Rossi. R, Cavina M, Setti L. Characterization of electron transfer mechanism in mediated microbial fuel cell by entrapped electron mediator in Saccharomyces cerevisiae. Chem Eng Trans. 2016;49.
  • Olja S, Marta S, Eberlin Livia S, et al. Electrochemical monitoring of the impact of polymicrobial infections on pseudomonas aeruginosa and growth dependent medium. Biosens Bioelectron. 2019;142:111538.
  • Moradian JM, Xu Z, Shi Y. Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of Cystobasidium slooffiae. Int J Energy Res. 2020;44(1):325–333.
  • Wu S, Xiao Y, Song P. Riboflavin-mediated extracellular electron transfer process involving Pachysolen tannophilus. Electrochim Acta. 2016;210:117–121.
  • Zhi W, Ge Z, He Z, et al. Methods for understanding microbial community structures and functions in microbial fuel cells: a review. Bioresour Technol. 2014;171:461–468.
  • Makhtar MMZ, Vadivelu VM. Membraneless microbial fuel cell: characterization of electrogenic bacteria and kinetic growth model. J Environ Eng. 2019;145(5):1-7.
  • Ze Chao X, Yuan Yuan C, Wan Qin K, et al. Electron shuttles alter selenite reduction pathway and redistribute formed Se(0) nanoparticles. Process Biochem. 2016;51(3):408–413.