1,671
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Chrysophanol inhibits the osteoglycin/mTOR and activats NF2 signaling pathways to reduce viability and proliferation of malignant meningioma cells

& ORCID Icon
Pages 755-762 | Received 04 Jan 2021, Accepted 01 Feb 2021, Published online: 23 Feb 2021

References

  • Mawrin C. Molecular biology, diagnosis, and therapy of meningiomas. Pathologe. 2019;40(5):514–518.
  • Louis DN, Perry A, Reifenberger G. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820.
  • Buttrick S, Shah AH, Komotar RJ. Management of atypical and anaplastic meningiomas. Neurosurg Clin N Am. 2016;27(2):239–247.
  • Johnson MD, Abu-Farsakh S. Clinicopathologic features of incidental meningiomas: A review of the literature and the University of Rochester autopsy experience. Clin Neuropathol. 2019;38(3):118–121.
  • Tanaka K, Matsumoto E, Higashimaki Y. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem. 2012;287:11616–11628.
  • Fernandez B, Kampmann A, Pipp F. Osteoglycin expression and localization in rabbit tissues and atherosclerotic plaques. Mol Cell Biochem. 2003;246:3–11.
  • Van Aelst LN, Voss S, Carai P. Osteoglycin prevents cardiac dilatation and dysfunction after myocardial infarction through infarct collagen strengthening. Circ Res. 2015;116(3):425–436.
  • Mei Y, Du Z, Hu CC. Osteoglycin promotes meningioma development through downregulation of NF2 and activation of mTOR signaling[J]. Cell Commun Signal. 2017;15(1):34–43.
  • van Hinsbergh VW. Osteoglycin’s embracement of VEGF receptor-2 limits angiogenesis and collateralization. Cardiovasc Res. 2017;113(1):10–12.
  • Barresi V, Lionti S, La Rocca L. High p-mTOR expression is associated with recurrence and shorter disease-free survival in atypical meningiomas. Neuropathology. 2019;39(1):22–29.
  • Lim W, An Y, Yang C. Chrysophanol induces cell death and inhibits invasiveness via mitochondrial calcium overload in ovarian cancer cells. J Cell Biochem. 2018;119(12):10216–10227.
  • Ren L, Li Z, Dai C. Chrysophanol inhibits proliferation and induces apoptosis through NF-κB/cyclin D1 and NF-κB/Bcl-2 signaling cascade in breast cancer cell lines. Mol Med Rep. 2018;17(3):4376–4382.
  • Abedalthagafi M, Bi WL, Aizer AA. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016;18:649–655.
  • Clark VE, Erson-Omay EZ, Serin A. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339:1077–1080.
  • Shankar GM, Abedalthagafi M, Vaubel RA. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro Oncol. 2017;19:535–545.
  • Orr B, Riddick AC, Stewart GD. Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate. Oncogene. 2012;31:1130–1142.
  • Zheng CX, Zhao SX, Wang P. Different expression of mimecan as a marker for differential diagnosis between NSCLC and SCLC. Oncol Rep. 2009;22:1057–1061.
  • Huang Q, Lu G, Shen HM, et al. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007;27(5):609–630..
  • Zhang J, Wang Q, Wang Q. Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(3):469–480.
  • Hsu PC, Cheng CF, Hsieh PC. Chrysophanol regulates cell death, metastasis, and reactive oxygen species production in oral cancer cell lines. Evid Based Complement Alternat Med. 2020;2020. DOI:10.1155/2020/5867064.
  • Zeng CH, Guo B, Chen J. Antitumor effects of chrysophanol in malignant optic nerve meningioma cell lines are mediated via caspase activation, induction of mitochondrial mediated apoptosis, mitochondrial membrane depolarization and targeting the mitogen-Activated protein kinase signaling pathway. Pharmacology. 2019;104(1–2):28–35.
  • Lee MS, Cha EY, Sul JY. Chrysophanic acid blocks proliferation of colon cancer cells by inhibiting EGFR/mTOR pathway. Phytother Res. 2011;25(6):833–837.
  • Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25(1):27–36.
  • Toscano ECB, Vieira ÉLM, Portela ACDC. Bcl-2/Bax ratio increase does not prevent apoptosis of glia and granular neurons in patients with temporal lobe epilepsy. Neuropathology. 2019;39(5):348–357.
  • Wang R, Song F, Li S. Salvianolic acid A attenuates CCl(4)-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. Drug Des Devel Ther. 2019;13:1889–1900.
  • Gowda Saralamma VV, Lee HJ, Raha S. Inhibition of IAP’s and activation of p53 leads to caspase-dependent apoptosis in gastric cancer cells treated with Scutellarein. Oncotarget. 2017;9(5):5993–6006.
  • Lossi L, Castagna C, Merighi A. Caspase-3 mediated cell death in the normal development of the mammalian cerebellum. Int J Mol Sci. 2018;19(12):3999.
  • Crowley LC, Waterhouse NJ. Detecting cleaved caspase-3 in apoptotic cells by flow cytometry. Cold Spring Harb Protoc. 2016;16(11):201.
  • Choudhary GS, Al-Harbi S, Almasan A. Caspase- 3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol. 2015;1219:1–9.
  • Zhou M, Liu X, Li Z. Caspase- 3 regulates the migration, invasion and metastasis of colon cancer cells. Int J Cancer. 2018;143(4):921–930.