7,205
Views
29
CrossRef citations to date
0
Altmetric
Review

Algae-derived hydrocolloids in foods: applications and health-related issues

, , , &
Pages 3787-3801 | Received 19 May 2021, Accepted 17 Jun 2021, Published online: 19 Jul 2021

References

  • Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013;93(4):703–709.
  • Agulló E, Rodríguez MS, Ramos V, et al. Present and future role of chitin and chitosan in food. Macromol Biosci. 2003;3(10):521–530.
  • Branen AL, Haggerty RJ. Introduction to food additive. In: Food Additives. Second ed. Marcel Dekker, Inc; 1999. p. 1–10. New York.
  • Chia WY, Kok H, Chew KW, et al. Can algae contribute to the war with Covid-19? Bioengineered. 2021;12(1):1226–1237.
  • Considine GD, Ed. Van Nostrand’s Scientific Encyclopedia. Van Nostrand’s Scientific Encyclopedia. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2005.
  • Somogyi LP. Food Additives. In: Kirk-Othmer Encyclopedia of Chemical Technology (pp. 1–59). Hoboken, NJ, USA: John Wiley & Sons, Inc; 2015.
  • Nweze CC, Mustapha AA, Olose M. Aspartame food additive and its biochemical implication: a review. Food Science and Quality Management. 2015;36:16–23.
  • Saha D, Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol. 2010;47(6):587–597.
  • Williams PA, Phillips GO Introduction to food hydrocolloids. In: Handbook of Hydrocolloids: second Edition. Elsevier Inc; 2009. p. 1–22.
  • Imeson A. Food Stabilisers, Thickeners and Gelling Agents. In: Imeson A, editor. Food Stabilisers, Thickeners and Gelling Agents. Oxford, UK: Wiley-Blackwell; 2009c. p. 50–72.
  • Pegg AM The application of natural hydrocolloids to foods and beverages. In: Baines D, Seal R, editors. Natural Food Additives, Ingredients and Flavourings.  Cambridge: Elsevier; 2012. p. 175–196.
  • EC. European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. Off J Eur Union. 1995; L0002: 1–53.
  • Koyande AK, Chew KW, Rambabu K, et al. Microalgae: a potential alternative to health supplementation for humans. Food Sci Hum Wellness. 2019;8(1):16–24.
  • Kovač D, Simeunović J, Babić O, et al. Algae in food and feed. Food and Feed Research, 2013;40(1):21–31.
  • Rhein-Knudsen N, Ale MT, Meyer AS. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs. 2015;13(6):3340–3359.
  • Gangl D, Zedler JAZ, Rajakumar PD, et al. Biotechnological exploitation of microalgae. J Exp Bot. 2015;66(22):6975–6990. .
  • Hallmann A. Algal transgenics and biotechnology. Transgenic Plant J, 2007;1(1):81–98.
  • Hong IK, Jeon H, Lee SB. Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem. 2014;20(5):2687–2691.
  • Olaizola M. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng. 2003;20(4–6):459–466.
  • Leong HY, Chang CK, Lim JW, et al. Liquid Biphasic Systems for Oil-Rich Algae Bioproducts Processing. Sustainability. 2019;11:4682.
  • McHugh DJ (2003). A guide to the seaweed industry. Retrieved October8, 2020, from http://www.fao.org/3/y4765e/y4765e00.htm#Contents
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–648.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96.
  • Khoo KS, Lee SY, Ooi CW, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour Technol. 2019;288:121606.
  • Abdul-Latif NS, Ong MY, Nomanbhay S, et al. Estimation of carbon dioxide (CO2) reduction by utilization of algal biomass bioplastic in Malaysia using carbon emission pinch analysis (CEPA). Bioengineered. 2020;11((1):):154–164.
  • Cheah WY, Show PL, Yap YJ, et al. Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered. 2020;11(1):61–69.
  • Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62.
  • Cuellar‐Bermudez SP, Aguilar‐Hernandez I, Cardenas‐Chavez DL, et al. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8(2):190–209.
  • Michalak I, Chojnacka K, Saeid A. Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO2 algal extracts. Molecules. 2017;22:1.
  • Yanagisawa M, Kawai S, Murata K. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered. 2013;4(4):224–235.
  • Koyande AK, Show P-L, Guo R, et al. Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered. 2019;10(1):574–592.
  • García JL, deVicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol. 2017;10(5):1017–1024.
  • Rumin J, Nicolau E, deOliveira RG, et al. Analysis of scientific research driving microalgae market opportunities in Europe. Mar Drugs. 2020;18(5):264.
  • Ariede MB, Candido TM, Jacome ALM, et al. Cosmetic attributes of algae - A review. Algal Res. 2017;25:483–487.
  • Callaghan TM, Wilhelm KP. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part 2: clinical perspectives and clinical methods in the evaluation of ageing skin. Int J Cosmet Sci. 2008;30(5):323–332.
  • Sathasivam R, Radhakrishnan R, Hashem A, et al. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2019;26(4):709–722.
  • Munir N, Sharif N, Naz S, et al. Algae: a potent antioxidant source. Sky J Microbiol Res 2013;1(3):22–31.
  • Imeson A Carrageenan and furcellaran. In: Phillips G, Williams P, editors. Handbook of Hydrocolloids: second Edition. Cambridge: Elsevier Inc; 2009b. p. 164–185.
  • Blakemore WR, Harpell AR Carrageenan. In:  Alan I, editor. Food Stabilisers, Thickeners and Gelling Agents. Hoboken: Wiley Online Library; 2010. p. 73–94.
  • Campbell R, Hotchkiss S. Carrageenan industry market overview. In: Hurtado, AQ, Critchley, AT, Neish, IC, editors. Tropical Seaweed Farming Trends, Problems and Opportunities. Vol. 9. New York: Springer International Publishing; 2017. p. 193–205.
  • Oladzadabbasabadi N, Ebadi S, Mohammadi Nafchi A, et al. Functional properties of dually modified sago starch/κ-carrageenan films: an alternative to gelatin in pharmaceutical capsules. Carbohydr Polym. 2017;160:43–51.
  • Sudhakar YN, Selvakumar M, Bhat DK. Chapter 4-Biopolymer Electrolytes for Solar Cells and Electrochemical Cells. In: Sudhakar YN, Selvakumar M, Bhat DK, editors. Biopolymer Electrolytes. Amsterdam: Elsevier; 2018. p. 117–149.
  • Langendorff V. Effects of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocoll. 2000;14(4):273–280.
  • Yuan C, Du L, Zhang G, et al. Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel. Food Chem. 2016;210:600–605.
  • Bixler HJ. The carrageenan controversy. J Appl Phycol. 2017;29(5):2201–2207.
  • Błaszak B, Gozdecka G, Shyichuk A. Carrageenan as a functional additive in the production of cheese and cheese-like products. Acta Scientiarum Polonorum, Technologia Alimentaria 2018;17(2):107–116.
  • David S, Shani Levi C, Fahoum L, et al. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Function. 2018;9(3):1344–1352.
  • Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect. 2001;109(10):983–994.
  • David S, Wojciechowska A, Portmann R, et al. The impact of food-grade carrageenans and consumer age on the in vitro proteolysis of whey proteins. Food Res Int. 2020;130:108964.
  • Capron I, Yvon M, Muller G. In-vitro gastric stability of carrageenan. Food Hydrocoll. 1996;10(2):239–244.
  • David-Birman T, Mackie A, Lesmes U. Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocoll. 2013;31(1):33–41.
  • Drohan DD, Tziboula A, McNulty D, et al. Milk protein-carrageenan interactions. Food Hydrocoll. 1997;11(1):101–107.
  • Fahoum L, Moscovici A, David S, et al. Digestive fate of dietary carrageenan: evidence of interference with digestive proteolysis and disruption of gut epithelial function. Mol Nut Food Res. 2017;61(3):1600545.
  • Bhattacharyya S, Gill R, Mei LC, et al. Toll-like receptor 4 mediates induction of the Bcl10-NFκB- interleukin-8 inflammatory pathway by carrageenan in human intestinal epithelial cells. J Biol Chem. 2008;283(16):10550–10558.
  • Borthakur A, Bhattacharyya S, Anbazhagan AN, et al. Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFκB-BCL10 loop. Biochim Biophys Acta, Mol Basis Dis. 2012;1822(8):1300–1307.
  • Benard C, Cultrone A, Michel C, et al. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-κB activation. PLoS ONE. 2010;5(1):e8666. .
  • Gibson GR, Macfarlane S, Cummings JH. The fermentability of polysaccharides by mixed human faecal bacteria in relation to their suitability as bulk-forming laxatives. Lett Appl Microbiol. 1990;11(5):251–254.
  • Michel C, Macfarlane GT. Digestive fates of soluble polysaccharides from marine macroalgae: involvement of the colonic microflora and physiological consequences for the host. J Appl Bacteriol. 1996;80(4):349–369.
  • Miller IJ, Blunt JW. Desulfation of algal galactans. Carbohydr Res. 1998;309(1):39–43.
  • Sun Y, Cui X, Duan M, et al. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells. J Funct Foods. 2019;59:80–91.
  • Gao Y, Lv X, Yang H, et al. Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-κB and NLRP3 pathways in carrageenan-induced pleurisy. Food Function. 2020;11(3):2522–2534.
  • Mi Y, Chin YX, Cao WX, et al. Native κ-carrageenan induced-colitis is related to host intestinal microecology. Int J Biol Macromol. 2020;147:284–294.
  • Ou Z, Zhao J, Zhu L, et al. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed Pharmacother. 2019;118:109347.
  • Sur B, Kang S, Kim M, et al. Inhibition of carrageenan/kaolin-induced arthritis in rats and of inflammatory cytokine expressions in human IL-1β-stimulated fibroblast-like synoviocytes by a benzylideneacetophenone derivative. Inflammation. 2019;42(3):928–936.
  • Guo J, Han S, Lu X, et al. κ-Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 Macrophages by inhibiting CD14. J Funct Foods. 2019;57:335–344.
  • Lee D, Swan CK, Suskind D, et al. Children with Crohn’s disease frequently consume select food additives. Dig Dis Sci. 2018;63(10):2722–2728. .
  • duPreez R, Paul N, Mouatt P, et al. Carrageenans from the red seaweed Sarconema filiforme attenuate symptoms of diet-induced metabolic syndrome in rats. Mar Drugs. 2020;18(2):97.
  • Klisch S, Dicaprio E, Soule KE, et al. Safety of carrageenan. University of California, Agriculture and Natural Resources; 2018. Davis.
  • Armisén R, Galatas F Agar. In:  Phillips GO, Williams PA, editors. Handbook of Hydrocolloids: second Edition. Cambridge: Elsevier Inc; 2009. p. 82–107.
  • Imeson A Agar. In: Alan I, editor. Food Stabilisers, Thickeners and Gelling Agents. Hoboken: Wiley Online Library; 2009a. p. 31–49.
  • Selby HH, Whistler RL Agar. In:  BeMiller J, Whistler R, editors. Industrial Gums: polysaccharides and Their Derivatives: third Edition. Cambridge: Elsevier Inc; 2012. p. 87–103.
  • Mostafavi FS, Zaeim D. Agar-based edible films for food packaging applications - A review. Int J Biol Macromol. 2020;159:1165–1176.
  • Ouyang QQ, Hu Z, Li SD, et al. Thermal degradation of agar: mechanism and toxicity of products. Food Chem. 2018;264:277–283.
  • Ellis AL, Norton AB, Mills TB, et al. Stabilisation of foams by agar gel particles. Food Hydrocoll. 2017;73:222–228.
  • Helgerud T, Gaserød O, Fjæreide T, et al. Alginates. In: Alan I, editor. Food Stabilisers, Thickeners and Gelling Agents. Hoboken: Wiley Online LibraryP. 50–72; 2010.
  • Draget KI Alginates. In: Phillips, G, Williams, P, editors. Handbook of Hydrocolloids: second Edition.  Cambridge: Elsevier Inc; 2009. p. 807–828.
  • Paredes Juárez GA, Spasojevic M, Faas MM, et al. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol. 2014;2(26):1–15.
  • Aarstad O, Heggset EB, Pedersen IS, et al. Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils. Polymers. 2017;9(8):378.
  • Xu X, Han Q, Shi J, et al. Structural, thermal and rheological characterization of bovine serum albumin binding with sodium alginate. J Mol Liq. 2020;299:112123.
  • Li Y, Dou X, Pang J, et al. Improvement of fucoxanthin oral efficacy via vehicles based on gum Arabic, gelatin and alginate hydrogel: delivery system for oral efficacy enhancement of functional food ingredients. J Funct Foods. 2019;63:103573.
  • Mahmoud M, Abdallah NA, El-Shafei K, et al. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon. 2020;6(3):e03541.
  • Dehkordi SS, Alemzadeh I, Vaziri AS, et al. Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria. Appl Biochem Biotechnol. 2020;190(1):182–196.
  • Bambace MF, Alvarez MV, Moreira M, et al. Novel functional blueberries: fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res Int. 2019;122:653–660.
  • Su C, Feng Y, Ye J, et al. Effect of sodium alginate on the stability of natural soybean oil body emulsions. RSC Adv. 2018;8(9):4731–4741. .
  • Chen J, Mu T, Goffin D, et al. Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. J Food Eng. 2019;261:76–86.
  • Jungst T, Smolan W, Schacht K, et al. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016;116(3):1496–1539.
  • Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. .
  • Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10):4323–4331. .
  • Corstens MN, Troost FJ, Alleleyn AME, et al. Encapsulation of lipids as emulsion-alginate beads reduces food intake: a randomized placebo-controlled cross-over human trial in overweight adults. Nutr Res. 2019;63:86–94.
  • Asnani GP, Bahekar J, Kokare CR. Development of novel pH–responsive dual crosslinked hydrogel beads based on Portulaca oleracea polysaccharide-alginate-borax for colon specific delivery of 5-fluorouracil. J Drug Delivery Sci Technol. 2018;48:200–208.
  • Chenoweth MB. The toxicity of sodium alginate in cats. Ann Surg. 1948;127(6):1173–1181.
  • Solandt OM. Some observations upon sodium alginate. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences. 1941;31(1):25–30.
  • Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. Journal of Biomedical Materials Research - Part A. 2009;90(2):411–418.
  • Kim AR, Hwang JH, Kim HM, et al. Reduction of inflammatory reaction in the use of purified alginate microcapsules. J Biomater Sci Polym Ed. 2013;24(9):1084–1098. .
  • Wang Y, Li L, Ye C, et al. Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice. Appl Microbiol Biotechnol. 2020;104(8):3541–3554.
  • Shteyer E, BenYa’acov A, Zolotaryova L, et al. Prevention of acetaminophen-induced liver injury by alginate. Toxicol Appl Pharmacol. 2019;363:72–78.
  • Qureshi D, Nayak SK, Maji S, et al. Carrageenan: a wonder polymer from marine algae for potential drug delivery applications. Curr Pharm Des. 2019;25(11):1172–1186.
  • Sedayu BB, Cran MJ, Bigger SW. A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydr Polym. 2019;216:287–302.
  • Gioele C, Marilena S, Valbona A, et al. Gracilaria gracilis, source of agar: a short review. Curr Org Chem. 2017;21(5):380–386.
  • Lee W-K, Lim -Y-Y, Leow AT-C, et al. Biosynthesis of agar in red seaweeds: a review. Carbohydr Polym. 2017;164:23–30.
  • Sansonetti A, Bertasa M, Canevali C, et al. A review in using agar gels for cleaning art surfaces. J CultHeritage. 2020;44:285–296.
  • Wang B, Wan Y, Zheng Y, et al. Alginate-based composites for environmental applications: a critical review. Crit Rev Environ Sci Technol. 2019;49(4):318–356. .
  • Agüero L, Zaldivar-Silva D, Peña L, et al. Alginate microparticles as oral colon drug delivery device: a review. Carbohydr Polym. 2017;168:32–43.
  • Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules. 2018;19(1):3–21.
  • Varaprasad K, Jayaramudu T, Kanikireddy V, et al. Alginate-based composite materials for wound dressing application: a mini review. Carbohydr Polym. 2020;236:116025.
  • McKim JM, Baas H, Rice GP, et al. Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem Toxicol. 2016;96:1–10.
  • Tobacman JK. Reply to comments regarding “The Carrageenan Controversy.”. J Appl Phycol. 2017;29(5):2209–2211.
  • Weiner ML, McKim JM. Comment on “Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by S. David, C. S. Levi, L. Fahoum, Y. Ungar, E. G. Meyron-Holtz, A. Shpigelman and U. Lesmes,: food Funct., 2018, 9, 1. Food Function. 2019;10(3):1760–1762.
  • David S, Fahoum L, Rozen G, et al. Reply to the Comment on “Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by M. Weiner and J. McKim, Food Funct. 2019 Food Function. 2019;101:1763–1766.
  • Beetul K, Gopeechund A, Kaullysing D, et al. Challenges and opportunities in the present era of marine algal applications. In: Thajuddin, N, Dhanasekaran, D, editors. Algae - Organisms for Imminent Biotechnology. London: InTech; 2016. p. 237–276.
  • Enamala MK, Enamala S, Chavali M, et al. Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews. 2018; 94: 49–68.
  • Villanueva RD, Mendoza WG, Rodrigueza MRC, et al. Structure and functional performance of gigartinacean kappa-iota hybrid carrageenan and solieriacean kappa-iota carrageenan blends. Food Hydrocoll. 2004;18(2):283–292.
  • Bertasa M, Botteon A, Brambilla L, et al. Cleaning materials: a compositional multi-analytical characterization of commercial agar powders. J Anal Appl Pyrolysis. 2017;125:310–317.