1,273
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Clinical significance of the serum miR-455-5p expression in patients with neonatal sepsis

, , , , , & ORCID Icon show all
Pages 4174-4182 | Received 31 May 2021, Accepted 12 Jul 2021, Published online: 21 Jul 2021

References

  • Benz F, et al. Circulating MicroRNAs as biomarkers for sepsis. Int J Mol Sci. 2016;17(1):1.
  • Kumar A, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–1596.
  • Raimondi F, et al. Neonatal sepsis: a difficult diagnostic challenge. Clin Biochem. 2011;44(7):463–464.
  • Catal F, et al. Mean platelet volume (MPV) may simply predict the severity of sepsis in preterm infants. Clin Lab. 2014;60(07/2014):1193–1200.
  • Cerra FB. The systemic septic response: multiple systems organ failure. Crit Care Clin. 1985;1(3):591–607.
  • Tat Trung N, et al. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients. Int J Infect Dis. 2018;67:122–128.
  • Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14(1):R15.
  • Bloos F, Reinhart K. Rapid diagnosis of sepsis. Virulence. 2014;5(1):154–160.
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–862.
  • Wu S, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3ʹ untranslated region. Oncogene. 2010;29(15):2302–2308.
  • Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–1934.
  • Yao L, et al. Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress. Int J Clin Exp Pathol. 2015;8(7):7675–7684.
  • Nong A, et al. MicroRNA miR-126 attenuates brain injury in septic rats via NF-kappaB signaling pathway. Bioengineered. 2021;12(1):2639–2648.
  • Huang S, et al. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis. Exp Ther Med. 2017;13(4):1235–1244.
  • Warg LA, et al. The role of the E2F1 transcription factor in the innate immune response to systemic LPS. Am J Physiol Lung Cell Mol Physiol. 2012;303(5):L391–400.
  • Hofer N, et al. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102(1):25–36.
  • Omran A, et al. Salivary C-reactive protein, mean platelet volume and neutrophil lymphocyte ratio as diagnostic markers for neonatal sepsis. J Pediatr (Rio J). 2018;94(1):82–87.
  • Yamada Y, et al. Anti-tumor roles of both strands of the miR-455 duplex: their targets SKA1 and SKA3 are involved in the pathogenesis of renal cell carcinoma. Oncotarget. 2018;9(42):26638–26658.
  • Shao Y, et al. Association between genetic polymorphisms in the autophagy-related 5 gene promoter and the risk of sepsis. Sci Rep. 2017;7(1):9399.
  • Vincent JL. Management of sepsis in the critically ill patient: key aspects. Expert Opin Pharmacother. 2006;7(15):2037–2045.
  • Fleischmann C, et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–272.
  • Zhang W, et al. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm Med. 2019;19(1):93.
  • Chen W, et al. MicroRNA-455-3p modulates cartilage development and degeneration through modification of histone H3 acetylation. Biochim Biophys Acta. 2016;1863(12):2881–2891.
  • Yao S, et al. miR-455 inhibits neuronal cell death by targeting TRAF3 in cerebral ischemic stroke. Neuropsychiatr Dis Treat. 2016;12:3083–3092.
  • Wong N, et al. Prognostic microRNA signatures derived from the cancer genome atlas for head and neck squamous cell carcinomas. Cancer Med. 2016;5(7):1619–1628.
  • Liu J, et al. MiR-455-5p acts as a novel tumor suppressor in gastric cancer by down-regulating RAB18. Gene. 2016;592(2):308–315.
  • Kumar V, et al. miR-130a and miR-212 disrupt the intestinal epithelial barrier through modulation of ppargamma and occludin expression in chronic simian immunodeficiency virus-infected rhesus macaques. J Immunol. 2018;200(8):2677–2689.
  • Cui L, et al. Serum microRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease. PLoS One. 2011;6(11):e27071.
  • Kinder TB, et al. Muscle weakness in myositis: microRNA-Mediated dystrophin reduction in a myositis mouse model and human muscle bioPSies. Arthritis Rheumatol. 2020;72(7):1170–1183.
  • Liu Y, et al. Neutrophil-lymphocyte ratio and plasma lactate predict 28-day mortality in patients with sepsis. J Clin Lab Anal. 2019;33(7):e22942.
  • Zahorec R. Ratio of neutrophil to lymphocyte counts–rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5–14.
  • Cetinkaya M, et al. Comparison of serum amyloid A concentrations with those of C-reactive protein and procalcitonin in diagnosis and follow-up of neonatal sepsis in premature infants. J Perinatol. 2009;29(3):225–231.
  • Abdollahi A, et al. Diagnostic value of simultaneous measurement of procalcitonin, interleukin-6 and hs-CRP in prediction of early-onset neonatal sepsis. Mediterr J Hematol Infect Dis. 2012;4(1):e2012028.
  • Dandona P, et al. Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab. 1994;79(6):1605–1608.
  • Vouloumanou EK, et al. Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intensive Care Med. 2011;37(5):747–762.
  • Aydemir C, et al. The cut-off levels of procalcitonin and C-reactive protein and the kinetics of mean platelet volume in preterm neonates with sepsis. BMC Pediatr. 2018;18(1):253.