2,045
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

A nine-hub-gene signature of metabolic syndrome identified using machine learning algorithms and integrated bioinformatics

, , , , , , & show all
Pages 5727-5738 | Received 14 Jun 2021, Accepted 11 Aug 2021, Published online: 13 Sep 2021

References

  • Jahani V, Kavousi A, Mehri S, et al. Rho kinase, a potential target in the treatment of metabolic syndrome. Biomed Pharmacother [Internet]. 2018;106(May):1024–1030. Available from: https://doi.org/10.1016/j.biopha.2018.07.060
  • Martínez MC, Andriantsitohaina R. Extracellular vesicles in metabolic syndrome. Circ Res. 2017;120(10):1674–1686.
  • Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32(9):2052–2059.
  • Ren J, Anversa P. The insulin-like growth factor i system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol [Internet]. 2015;93(4):409–417. Available from: http://dx.doi.org/10.1016/j.bcp.2014.12.006
  • Ceylan H. Identification of hub genes associated with obesity-induced hepatocellular carcinoma risk based on integrated bioinformatics analysis. Med Oncol. 2021 Apr;38(6):63.
  • Gong LL, Yang S, Zhang W, et al. Discovery of metabolite profiles of metabolic syndrome using untargeted and targeted LC–MS based lipidomics approach. J Pharm Biomed Anal. 2020;177:112848.
  • Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: time for a conceptual framework shift. Diab Vasc Dis Res. 2019;16(2):118–127.
  • Chen PY, Cripps AW, West NP, et al. A correlation-based network for biomarker discovery in obesity with metabolic syndrome. BMC Bioinformatics [Internet]. 2019;20(Suppl6):1–10. Available from: http://dx.doi.org/10.1186/s12859-019-3064-2
  • Robinson MD, Mishra I, Deodhar S, et al. Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study. J Transl Med [Internet]. 2017;15(1):1–19. Available from: https://doi.org/10.1186/s12967-017-1359-5
  • Kong S, Cho YS. Identification of female-specific genetic variants for metabolic syndrome and its component traits to improve the prediction of metabolic syndrome in females. BMC Med Genet. 2019;20(1):1–13.
  • Moon S, Lee Y, Won S, et al. Multiple genotype-phenotype association study reveals intronic variant pair on SIDT2 associated with metabolic syndrome in a Korean population. Hum Genomics. 2018;12(1):1–10.
  • Paczkowska-Abdulsalam M, Niemira M, Bielska A, et al. Evaluation of transcriptomic regulations behind metabolic syndrome in obese and lean subjects. Int J Mol Sci. 2020;21:4.
  • Shiino S, Matsuzaki J, Shimomura A, et al. Serum miRNA–based prediction of axillary lymph node metastasis in breast cancer. Clin Cancer Res. 2019;25(6):1817–1827.
  • Ceylan H. A bioinformatics approach for identifying potential molecular mechanisms and key genes involved in COVID-19 associated cardiac remodeling. Gene Rep. 2021 Sep;24:101246.
  • Li J, Zheng L, Uchiyama A, et al. A data mining paradigm for identifying key factors in biological processes using gene expression data. Sci Rep. 2018 Jun;8(1):9083.
  • Liu GZ, Chen C, Kong N, et al. Identification of potential miRNA biomarkers for traumatic osteonecrosis of femoral head. J Cell Physiol. 2020;235(11):8129–8140.
  • Chen C, Liu GZ, Liao YY, et al. Identification of candidate biomarkers for salt sensitivity of blood pressure by integrated bioinformatics analysis. Front Genet. 2020;11(September):1–10.
  • Wang G, Yu J, Yang Y, et al. Whole‐transcriptome sequencing uncovers core regulatory modules and gene signatures of human fetal growth restriction. Clin Transl Med [Internet]. 2020;9(1). Available from: https://doi.org/10.1186/s40169-020-0259-0
  • Deo RC. Machine learning in medicine. Circulation. 2017;25(5):1032–1057.
  • Mamoshina P, Vieira A, Putin E, et al. Applications of deep learning in biomedicine. Mol Pharm. 2016;13(5):1445–1454.
  • Wei Q, Fang W, Chen X, et al. Establishment and validation of a mathematical diagnosis model to distinguish benign pulmonary nodules from early non-small cell lung cancer in Chinese people. Transl Lung Cancer Res. 2020;9(5):1843–1852.
  • Howard F, Kochanny S, Koshy M, et al. Machine learning guided adjuvant treatment of head and neck cancer. J Clin Oncol. 2020;38(15_suppl):6567.
  • Jales Neto LH, Wicik Z, Torres GHF, et al. Overexpression of SNTG2, TRAF3IP2, and ITGA6 transcripts is associated with osteoporotic vertebral fracture in elderly women from community. Mol Genet Genomic Med. 2020;8(9):1–12.
  • D’Amore S, Härdfeldt J, Cariello M, et al. Identification of miR-9-5p as direct regulator of ABCA1 and HDL-driven reverse cholesterol transport in circulating CD14 + cells of patients with metabolic syndrome. Cardiovasc Res. 2018;114(8):1154–1164.
  • Matualatupauw JC, O’Grada C, Hughes MF, et al. Integrated analys of high-fat challenge-induced changes in blood cell whole-genome gene expression. Mol Nutr Food Res. 2019;63(20):1–9.
  • Langfelder P. Wgcna: HS. An R package for weighted correlation network analysis. BMC Bioinf. 2008 Dec 29;9:559
  • Yu G, Wang LG, Han Y, et al. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16(5):284–287.
  • Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. Diabet Med. 1999;16(5):442–443.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26(1):139–140.
  • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.
  • Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics [Internet]. 2011;12(1):77. Available from: http://www.biomedcentral.com/1471-2105/12/77
  • Carrier A. Metabolic syndrome and oxidative stress: a complex relationship. Antioxid Redox Signal. 2017;26(9):429–431.
  • Cheung L, Zervou S, Mattsson G, et al. c-Myc directly induces both impaired insulin secretion and loss of β-cell mass, independently of hyperglycemia in vivo. Islets. 2010;2(1):37–45.
  • Kazakova EV, Wu Y, Zhou Z, et al. Association between UBE2E2 variant rs7612463 and type 2 diabetes mellitus in a Chinese han population. Acta Biochim Pol. 2015;62(2):241–245.
  • Yamauchi T, Hara K, Maeda S, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet [Internet]. 2010;42(10):864–868. Available from: http://dx.doi.org/10.1038/ng.660
  • Yang XD, Xiang DX, Yang YY. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab. 2016;18(8):747–754.
  • Yang S, Wang B, Humphries F, et al. The E3 Ubiquitin ligase pellino3 protects against obesity-induced inflammation and insulin resistance. Immunity [Internet]. 2014;41(6):973–987. Available from: http://dx.doi.org/10.1016/j.immuni.2014.11.013
  • Moraes-Vieira PM, Castoldi A, Aryal P, et al. Antigen presentation and T-cell activation are critical for RBP4-induced insulin resistance. Diabetes. 2016;65(5):1317–1327.
  • Cabrera SM, Engle S, Kaldunski M, et al. Innate immune activity as a predictor of persistent insulin secretion and association with responsiveness to CTLA4-Ig treatment in recent-onset type 1 diabetes. Diabetologia. 2018;61(11):2356–2370.
  • Liu Q, Yu J, Wang L, et al. Inhibition of PU.1 ameliorates metabolic dysfunction and non-alcoholic steatohepatitis. J Hepatol [Internet]. 2020;73(2):361–370. Available from: https://doi.org/10.1016/j.jhep.2020.02.025
  • Lin L, Pang W, Chen K, et al. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am J Physiol - Endocrinol Metab. 2012;302:12.
  • Dhana K, Braun KVE, Nano J, et al. An epigenome-wide association study of obesity-related traits. Am J Epidemiol [Internet]. 2017;186(2):227–236. Available from: https://pubmed.ncbi.nlm.nih.gov/28459981/
  • Yang X, Jansson PA, Nagaev I, et al. Evidence of impaired adipogenesis in insulin resistance. Biochem Biophys Res Commun. 2004;317(4):1045–1051.
  • Karczewska-Kupczewska M, Stefanowicz M, Matulewicz N, et al. Wnt signaling genes in adipose tissue and skeletal muscle of humans with different degrees of insulin sensitivity. J Clin Endocrinol Metab. 2016;101(8):3079–3087.
  • Frendo-Cumbo S, Jaldin-Fincati JR, Coyaud E, et al. Deficiency of the autophagy gene ATG16L1 induces insulin resistance through KLHL9/KLHL13/CUL3-mediated IRS1 degradation. J Biol Chem. 2019;294(44):16172–16185.
  • Manyes L, Arribas M, Gomez C, et al. Transcriptional profiling reveals functional links between RasGrf1 and Pttg1 in pancreatic beta cells. BMC Genomics. 2014;15(1):1–20.
  • Matthews AL, Koo CZ, Szyroka J, et al. Regulation of leukocytes by TspanC8 tetraspanins and the “molecular scissor” ADAM10. Front Immunol. 2018;9(JUL):1–9.
  • Adamson SE, Montgomery G, Seaman SA, et al. receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. Purinergic Signal. 2018;14(1):19–26.
  • Zhang Y, Ecelbarger CM, Lesniewski LA, et al. P2Y2 receptor promotes high-fat diet-induced obesity. Front Endocrinol (Lausanne). 2020;11:(June):1–19.
  • Merz J, Albrecht P, von Garlen S, et al. Purinergic receptor Y2 (P2Y2)- dependent VCAM-1 expression promotes immune cell infiltration in metabolic syndrome. Basic Res Cardiol [Internet]. 2018;113(6). Available from: https://doi.org/10.1007/s00395-018-0702-1
  • Kenefeck R, Narendran P, Walker LSK, et al. Follicular helper T cell signature in type 1 diabetes Find the latest version : follicular helper T cell signature in type 1 diabetes. J Clin Invest. 2015;125(1):292–303.
  • Wang Q, Zhai X, Chen X, et al. Dysregulation of circulating CD4+CXCR5+ T cells in type 2 diabetes mellitus. Apmis. 2015;123(2):146–151.
  • O’Neill S, Bohl M, Gregersen S, et al. Blood-based biomarkers for metabolic syndrome. Trends Endocrinol Metab [Internet]. 2016;27(6):363–374. Available from: http://dx.doi.org/10.1016/j.tem.2016.03.012