2,683
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Design and characterization of small-diameter tissue-engineered blood vessels constructed by electrospun polyurethane-core and gelatin-shell coaxial fiber

, , , , , , & show all
Pages 5769-5788 | Received 05 Jul 2021, Accepted 10 Aug 2021, Published online: 14 Sep 2021

References

  • Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016[J]. Lancet. 2017;390(10100):1151–1210.
  • Ki-Woong N, Hyung-Min K, Jae-Sung L, et al. The presence and severity of cerebral small vessel disease increases the frequency of stroke in a cohort of patients with large artery occlusive disease[J]. PloS One. 2017;12(10):e0184944.
  • Copes F, Pien N, Vlierberghe SV, et al. Collagen-based tissue engineering strategies for vascular medicine[J]. Front Bioeng Biotechnol. 2019;7:1–15.
  • Kim H, Kim S, Han S, et al. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: a nationwide population-based study[J]. BMC Public Health. 2019;19(1):1112.
  • Pei X, Zhu S-Q, Long X, et al. Modified distal aortic arch occlusion during aortic arch replacement[J]. Heart Lung Circ. 2020;29(9):9.
  • Radke D, Jia W, Sharma D, et al. Tissue engineering at the blood-contacting surface: a review of challenges and strategies in vascular graft development[J]. Advanced Healthcare Materials. 2018. p. 1701461.
  • Gaudino M, Taggart D, Suma H, et al. The choice of conduits in coronary artery bypass surgery[J]. J Am Coll Cardiol. 2015;66(15):1729–1737.
  • Aydin C, Ince V, Otan E, et al. Storage of allogeneic vascular grafts: experience from a high-volume liver transplant institute[J]. Int Surg. 2013;98(2):170–174.
  • Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering[J]. Regen Med. 2010;5(1):107–120.
  • Lee P-X, Liu B-L, Show PL, et al. Removal of calcium ions from aqueous solution by bovine serum albumin (BSA)-modified nanofiber membrane: dynamic adsorption performance and breakthrough analysis[J]. Biochem Eng J. 2021;171:108016.
  • Loh QL, Choong CC. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews. 2013;19(6):485–502.
  • Cruden N. Wilson. Advances in coronary stent technology: current expectations and new developments[J]. Research Reports in Clinical Cardiology. 2014. p. 85–96.
  • Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts[J]. Acta Biomater. 2014;10(1):11–25.
  • Carrabba M, Madeddu P. Current strategies for the manufacture of small size tissue engineering vascular grafts[J]. Frontiers Bioeng Biotechnol. 2018;6: 41.
  • Giretova M, Medvecky L, Petrovova E, et al. Polyhydroxybutyrate/Chitosan 3D scaffolds promote in vitro and in vivo chondrogenesis[J]. Appl Biochem Biotechnol. 2019;189(2):556–575.
  • Jiang YC, Jiang L, Huang A, et al. Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds[J]. Mater Sci Eng C. 2017;71:901–908.
  • Zhao Q, Cui H,Wang J, et al. Regulation Effects of biomimetic hybrid scaffolds on vascular endothelium remodeling[J]. ACS Appl Mater Interfaces. 2018;10(28):23583–23594.
  • Jiang S,Duan G,Zussman E, et al. Highly flexible and tough concentric triaxial polystyrene fibers[J]. ACS Appl Mater Interfaces. 2014;6(8):5918–5923.
  • Celikkin N, Rinoldi C, Costantini M, et al. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications[J]. Mater Sci Eng C. Mater Biol Appl.2017;78(sep):1277-1299.
  • Kim S-K. Seafood processing by-products: collagen and gelatin[J]. Springer New York. 2014;207–242. DOI:10.1007/978-1-4614-9590-1
  • Lee H, Lim S, Birajdar MS, et al. Fabrication of FGF-2 immobilized electrospun gelatin nanofibers for tissue engineering[J]. Int J Biol Macromol. 2016;93(Pt B):1559–1566.
  • Su K, Wang C. Recent advances in the use of gelatin in biomedical research[J]. Biotechnol Lett. 2015;37(11):2139–2145.
  • Xing Y, Gu Y, Guo L, et al. Gelatin coating promotes in situ endothelialization of electrospun polycaprolactone vascular grafts[J]. J Biomater Sci Poly Ed. 2021;32(9):1161–1181.
  • Tung WT, Zou J, Sun X, et al. Coaxial electrospinning of PEEU/gelatin to fiber meshes with enhanced mesenchymal stem cell attachment and proliferation[J]. Clin Hemorheol Microcirc. 2020;74(1):53–66.
  • Liu EY, Jung S, Yi H. Improved protein conjugation with uniform, macroporous poly (acrylamide-co-acrylic acid) hydrogel microspheres via EDC/NHS chemistry[J]. Langmuir. 2016;32(42):11043–11054.
  • Duan N, Geng X, Ye L, et al. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation[J]. Biomed Mater. 2016;11(3):035007.
  • Kielkopf CL, Bauer W, Urbatsch IL. Bradford assay for determining protein concentration[J]. Cold Spring Harb Protoc. 2020;2020(4):102269.
  • Geng X, Xu ZQ, Tu CZ, et al. Hydrogel complex electrospun scaffolds and their multiple functions in in situ vascular tissue engineering[J]. ACS Appl Bio Mater. 2021;4(3):2373–2384.
  • Laterreur V, Ruel J, Auger FA, et al. Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes[J]. J Mech Behav Biomed Mater. 2014;34:253–263.
  • Nagiah N, Johnson R, Anderson R. Highly compliant vascular grafts with gelatin-sheathed coaxially structured nanofibers[J]. Langmuir Acs J Surfaces Colloids. 2015;31(47):12993–13002.
  • Goldring JPD. Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis: methods and protocols[J]. Methods Mol Biol. 2019;1855:31–39.
  • Karimi A, Rahmati SM, Sera T, et al. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries[J]. Bioengineered. 2017;8(2):154–170.
  • Du F, Zhao W, Zhang M, et al. The synergistic effect of aligned nanofibers and hyaluronic acid modification on endothelial cell behavior for vascular tissue engineering[J]. J Nanosci Nanotechnol. 2011;11(8):6718–6725.
  • Butcher AL, Koh CT, Oyen ML. Systematic mechanical evaluation of electrospun gelatin meshes[J]. J Mech Behav Biomed Mater. 2017;69:412–419.
  • Coimbra P, Santos P, Alves P, et al. Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering[J]. Coll Surf Biointerf. 2017;159:7–15.
  • Rm A, Mab C, Em D, et al. Mlti-cellular tumor spheroids formation of colorectal cancer cells on Gelatin/PLCL and Collagen/PLCL nanofibrous scaffolds[J]. Eur Polym J. 2019;115:115–124.
  • Kutuzova L, Athanasopulu K, Schneider M, et al. In vitro bio-stability screening of novel implantable polyurethane elastomers[J]. Curr Direct Biomed Eng. 2018;4(1):535–538.
  • Zeugolis DI, Khew ST, Yew ES, et al. Electro-spinning of pure collagen nano-fibres-just an expensive way to make gelatin? [J]. Biomaterials. 2008;29(15):2293–2305.
  • Nguyen TH, Lee BT. Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers[J]. J Biomedi Sci Eng. 2010;3(12):1117–1124.
  • Han J, Li M, Lelkes P. Co-electrospun blends of PLGA, gelatin and elastin as anti-thrombogenic scaffolds for vascular grafts[J]. 8th World Biomaterials Congress. 2008;2.
  • Detta N, Errico C, Dinucci D, et al. Novel electrospun polyurethane/gelatin composite meshes for vascular grafts[J]. J Mater Sci. 2010;21(5):1761–1769.
  • Wang N, Burugapalli K, Wijesuriya S, et al. Electrospun polyurethane-core and gelatin-shell coaxial fibre coatings for miniature implantable biosensors[J]. Biofabrication. 2014;6(1):015002.
  • Tondnevis F, Keshvari H, Mohandesi JA. Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications[J]. J Biomed Mat Res part B-App Biomat. 2020;108(5):2276–2293.
  • Shalumon KT, Deepthi S, Anupama MS, et al. Fabrication of poly (l -lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering[J]. Int J Biol Macromol. 2015;72:1048–1055.
  • Joshi A, Xu Z, Ikegami Y, et al. Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling - ScienceDirect[J]. Int J Biol Macromol. 2020;151:186–192.
  • Johnson R, Ding Y, Nagiah N, et al. Coaxially-structured fibres with tailored material properties for vascular graft implant[J]. Mater Sci Eng C. 2019;97:1–11.
  • Yuan C, Ren X, Ye H, et al. Physicochemical and in vitro degradation behaviors of fibrous membranes with different polycaprolactone and gelatin proportions[J]. J Nanosci Nanotechnol. 2020;20(12):7376–7384.
  • Rodriguez M, Kluge JA, Smoot D, et al. Fabricating mechanically improved silk-based vascular grafts by solution control of the gel-spinning process[J]. Biomaterials. 2019;230:119567.
  • González-Paz RJ, Lligadas G, Ronda JC, et al. Study on the interaction between gelatin and polyurethanes derived from fatty acids[J]. J Biomed Mater Res A. 2013;101(4):1036–1046.
  • Sheikholeslam M, Wright MEE, Cheng N, et al. Electrospun polyurethane-gelatin composite: a new tissue-engineered scaffold for application in skin regeneration and repair of complex wounds[J]. ACS Biomater Sci Eng. 2020;6(1):505–516.
  • Cengiz F, Jirsak O. The effect of salt on the roller electrospinning of polyurethane nanofibers[J]. Fibers Polym. 2009;10(2):177–184.
  • Wei D, Wei S, Zhu J. Manipulated electrospun PVA nanofibers with inexpensive salts[J]. Macromol Mat Eng. 2010;295(10):958–965.
  • Burugapalli K, Wijesuriya S, Wang N, et al. Biomimetic electrospun coatings increase the in vivo sensitivity of implantable glucose biosensors[J]. J Biomed Mater Res A. 2018;106(4):1072–1081.
  • Daum R, Visser D, Wild C, et al. Fibronectin adsorption on electrospun synthetic vascular grafts attracts endothelial progenitor cells and promotes endothelialization in dynamic in vitro culture[J]. Cells. 2020;9(3):778.
  • Al-Sabti HA, Kindi AA, Al-Rasadi K, et al. Saphenous vein graft vs. radial artery graft searching for the best second coronary artery bypass graft[J]. J Saudi Heart Assoc. 2013;25(4):247–254.
  • Stekelenburg M, Rutten M, Snoeckx L, et al. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts[J]. Tissue Eng Part A. 2009;15(5):1081–1089.
  • Konig G, McAllister TN, Dusserre N, et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery[J]. Biomaterials. 2009;30(8):1542–1550.
  • Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery[J]. Nat Med. 2012;18(7):1148–1153.